Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
See all formats and pricing
More options …

tISM - a transportable integrating sphere setup for standardized measurements of blood and tissue phantoms

Preliminary results of the evaluation study

Philipp Wegerich
  • Corresponding author
  • Institute of Medical Engineering and Graduate School for Computing in Medicine and Life Sciences, Universität zu Lübeck, Ratzeburger Allee 160 23562 Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaas Rackebrandt / Hartmut Gehring
  • Departement of Anesthesiology and Intensive Care Medicine, University Medical Center, Ratzeburger Allee 160 23562 Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-07 | DOI: https://doi.org/10.1515/cdbme-2017-0061

Abstract

The development of an optical sensor for non-invasive measurements in humans requires a test setup, where the optical properties of tissue and blood can be adjusted and measured standardized. The goal of this work is to develop a simplified device based on an integrating sphere setup to evaluate the optical properties of tissue and blood phantoms with respect to static as well as flow conditions. Furthermore, the measurement system is intended to be used at different locations such as laboratories and operating theaters. We evaluate the absorption μa and reduced scattering μs' coefficients of specimens, with the developed integrating sphere setup. The measurement is regulated by a microcontroller for averaging and processing the data. The system is housed in a lightproof box and powered by a battery and therefore transportable. Due to this construction, no calibration is necessary between transports of the system. Calculations are executed with the inverse adding doubling algorithm. In order to basically calibrate and evaluate the setup before first transportation, a dilution series with Intralipid and India ink serve for the test. The results were consistent with precedent studies (mean absolute deviation for μs' of 0.75 mm-1) and demonstrate that this method might be able to produce liquids with adjustable optical properties, as required for further research. Furthermore, a first dilution series of heparinized heamoglobin (5 to 15 g/dl) with oxygen saturation of 98 % was measured with this system under flow conditions.

We observed a linear increase of μa and μs' with the increment of the haemoglobin concentration. As light sources, laser diodes in the range from 780 to 980 nm were introduced. Static and flow measurements indicated that the system is capable for evaluating optical properties under the selected conditions.

Keywords: Phantom model; optical-interaction-coefficients; Intralipid; blood

About the article

Published Online: 2017-09-07


Citation Information: Current Directions in Biomedical Engineering, Volume 3, Issue 2, Pages 295–299, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2017-0061.

Export Citation

©2017 Philipp Wegerich et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in