Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Wissenschaftlicher Beirat: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
Alle Formate und Preise
Weitere Optionen …

Inflow mapping method for numerical flow simulations of OCT-based patient-specific vessels using CFD

Carolin Wüstenhagen
  • Korrespondenzautor
  • Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Finja Borowski
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Michael Haude / Franz-Josef Neumann
  • University Heart Center Freiburg, Department of Cardiology and Angiology II, Bad Krozingen, Germany
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Niels Grabow
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Klaus-Peter Schmitz
  • Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Michael Stiehm
  • Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 07.09.2017 | DOI: https://doi.org/10.1515/cdbme-2017-0126

Abstract

Alteration of the flow characteristics in coronary vessels is correlated with coronary heart disease (CHD). In particular, wall shear stress (WSS) appears to be a hemody-namic key factor in the genesis of CHD. Since computational fluid dynamics (CFD) is a well-known method for the inves-tigation of WSS, it may be a valuable tool for the prediction of CHD. Latest imaging techniques, such as optical coher-ence tomography (OCT) in conjunction with angiography deliver precise 2D data sets of patient-specific vessel geome-try, which can be used for CFD analysis. Current CFD stud-ies utilize patient-specific geometries, but are lacking well defined physiologic inflow conditions.

In this study, we present an inflow mapping method for patient-specific arterial vessels, which is capable of consider-ing the influence of bifurcations located proximal of the OCT-data set. At first, the patient-specific vessel was recon-structed. For this purpose the OCT-based vessel cross sec-tions were arranged along an angiographic based vessel pathway. Secondly, we simulated the flow field in a generic bifurcation model by means of CFD. Thereafter the flow field of a side branch was extracted and transferred (mapped) to the inlet of the patient-specific vessel.

To evaluate the influence of the physiological inlet the WSS distribution of the same patient-specific vessel was calculated using an axial-symmetric inflow condition. Analy-sis of the simulation data yielded deviations of the WSS distribution in the proximal vessel segment. A bifurcation, located upstream of the relevant vessel segment strongly affects the flow in the OCT-based vessel reconstruction and has a strong influence on the results of the numerical analy-sis. Therefore, it is important to implement not only the pa-tient-specific geometry, but also an inlet boundary condition adapted to the upstream velocity distribution reflecting the actual proximal flow situation of the vessel.

Keywords: 3D CFD; velocity profile; OCT; wall shear stress

Artikelinformationen

Online erschienen: 07.09.2017


Quellenangabe: Current Directions in Biomedical Engineering, Band 3, Heft 2, Seiten 603–606, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2017-0126.

Zitat exportieren

©2017 Carolin Wüstenhagen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Kommentare (0)