Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
See all formats and pricing
More options …

Rheological analysis of hybrid hydrogels during polymerization processes

Sabine Illner
  • Corresponding author
  • Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga Sahmel
  • Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Siewert
  • Institute for Implant Technology and Biomaterials e.V. and Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Eickner
  • Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niels Grabow
  • Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-07 | DOI: https://doi.org/10.1515/cdbme-2017-0148

Abstract

Development of new implant coatings with temperature-controlled drug release to treat infections after device implantation can be triggered by highly elastic hydrogels with adequate stability and adhesive strength in the swollen state. By using an ionic liquid (IL [ViPrIm]+[Br]) as additive to N-isopropylacrylamide (NIPAAm) unique effects on volumetric changes and mechanical properties as well as thermoresponsive drug release of the obtained hybrid hydrogels were observed. In this context, rheological measurements allow the monitoring of gelation processes as well as chemical, mechanical, and thermal treatments and effects of additives. Hybrid hydrogels of pNIPAAm and poly (ionic liquid) (PIL) were prepared by radical emulsion polymerization with N,N′-methylenebis(acrylamide) as 3D crosslinking agent. By varying monomer, initiator and crosslinker amounts the multi-compound system during polymerization was monitored by oscillatory time sweep experiments. The time dependence of the storage modulus (G′) and the loss modulus (G″) was measured, whereby the intersection of G′ and G″ indicates the sol-gel transition. Viscoelastic behavior and complex viscosity of crosslinked and non-crosslinked hydrogels were obtained. Within material characterization rheology can be used to determine process capability and optimal working conditions. For biomedical applications complete hydrogelation inter-connecting all compounds can be received providing the possibility to process mechanically stable, swellable implant coatings or wound closures.

Keywords: hydrogel; crosslinking; gelation; N-vinyl-imidazolium; polymeric ionic liquids

About the article

Published Online: 2017-09-07


Citation Information: Current Directions in Biomedical Engineering, Volume 3, Issue 2, Pages 699–702, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2017-0148.

Export Citation

©2017 Sabine Illner et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in