Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
See all formats and pricing
More options …

Development of a microstent system for minimally invasive glaucoma surgery

Stefan Siewert
  • Corresponding author
  • Institute for Implant-Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfram Schmidt
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Kaule
  • Institute for Implant-Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefanie Kohse
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Stiehm
  • Institute for Implant-Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franziska Kopp
  • Department of Ophthalmology, Rostock University Medical Center, Doberaner Str. 140, 18057 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Stahnke
  • Department of Ophthalmology, Rostock University Medical Center, Doberaner Str. 140, 18057 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rudolf Guthoff
  • Department of Ophthalmology, Rostock University Medical Center, Doberaner Str. 140, 18057 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niels Grabow
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus-Peter Schmitz
  • Institute for Implant-Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-07 | DOI: https://doi.org/10.1515/cdbme-2017-0164

Abstract

Glaucoma is the leading cause of irreversible blindness worldwide. An increased intraocular pressure (IOP) is known as major risk factor. Currently, drainage devices that are implanted by means of minimally invasive glaucoma surgery (MIGS) represent a promising approach for IOP low-ering. Commercially available devices for MIGS suffer from unregulated drainage involving ocular hypotony. Further-more, long term drainage capability of current devices is limited by fibrotic encapsulation processes. Therefore, our group focusses on the development of a valved drug-eluting microstent for MIGS. Within the current work, we developed two alternative injector devices for minimally invasive mi-crostent implantation. Both injector devices were based on a cannula in which the microstent is loaded and a mandrel inside the cannula. Injector device A is designed to push the microstent out of the cannula and injector device B is de-signed to withdraw the cannula above the microstent. Manu-facturing of injector devices was conducted using rapid prototyping. Simplified polymeric microstents were manu-factured from polycarbonate based silicone elastomer. Simulated use was performed in a silicone eye model. The presented injector devices were suitable for minimally in-vasive ab interno microstent implantation into suprachoroidal space. Ongoing miniaturization of the microstent system will allow the use of a 22 G cannula in future ex vivo experiments.

Keywords: glaucoma drainage device; microstent; minimally invasive glaucoma surgery

About the article

Published Online: 2017-09-07


Citation Information: Current Directions in Biomedical Engineering, Volume 3, Issue 2, Pages 779–781, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2017-0164.

Export Citation

©2017 Stefan Siewert et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in