Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.

Open Access
See all formats and pricing
More options …

Low-cost physiological simulation system for endovascular treatment of aneurysms

Oskar Pfau / André Kemmling
  • Institute of Neuroradiology, University Hospital of Schleswig-Holstein, Schleswig-Holstein, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philipp Rostalski
Published Online: 2018-09-22 | DOI: https://doi.org/10.1515/cdbme-2018-0010


Minimally invasive procedures are more and more becoming the standard treatment for many surgical procedures such as the treatment of cerebral aneurysms. In an endovascular procedure the aneurysm is filled with flexible platinum coils leading to embolization and blocking the blood flow in the aneurysm. This established treatment needs high skills and experience on the surgeon. In order to practice and plan a specific procedure or test a new device, a realistic simulation environment is needed. Modern 3D printing technology allows the fabrication of patient specific models incorporating the exact geometry of the pathological anatomy. This article describes the development of a low-cost physiological simulation system for the training of the endovascular treatment of aneurysms. In order to practice the procedure in a realistic scenario, a 3D printed model of the aneurysm is embedded in a fluidic simulation s ystem. In addition to the patient-specific anatomy of the aneurysm a pulsatile water flow is generated, which emulates the influence of blood flow on the behaviour of catheters and coils during deployment. The system consist of a controllable pump circuit generating a pulsatile flow which can be regulated automatically and additionally controlled externally by the user. For a suitable representation, a display which graphically represents the sensor data and settings is employed. The components were compactly integrated in a small case allowing for easy deployment in training workshops. The simulation setup was successfully tested in prospective patient specific treatment planning and workshops for students.

Keywords: simulation system for endovascular treatment; aneurysm treatment; 3D printed patient-specific models

About the article

Published Online: 2018-09-22

Published in Print: 2018-09-01

Citation Information: Current Directions in Biomedical Engineering, Volume 4, Issue 1, Pages 37–40, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2018-0010.

Export Citation

© 2018 by Walter de Gruyter Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in