Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.

CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
See all formats and pricing
More options …

Polyelectrolyte Coatings for Surface Modification of Medical Implants

Rumen Krastev
  • Corresponding author
  • Reutlingen University, Reutlingen, Germany and NMI Natural and Medical sciences institute at the University of Tübingen, Tübingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Rudt / Xin Xiong / Hanna Hartmann
Published Online: 2018-09-22 | DOI: https://doi.org/10.1515/cdbme-2018-0053


Polyelectrolyte multi-layer (PEM) coatings are prepared by alternative deposition of single polyelectrolyte monolayers on charged surfaces using the Layer-by-Layer (LbL) dip coating procedure. These are nanometre scaled coatings which allow fulfilling of different technical or biological requirements. The build-up process is based on selfassembly and self-organization of polycations and polyanions on different substrates including complex geometrical structures and even closed volumes, forming homogeneous layer without defects. Depending on the proper selection of the applied polyelectrolytes, coatings with different stabilities can be prepared. Some of the coatings are stable and cannot be removed from the surface. Others are degradable and can be used as systems for controlled local drug delivery. Here we summarise the results of our experience in preparation of PEM coatings with different functionalities. PEM coatings can be used as controllable delivery system for siRNA polyplexes. They can be used to control the adhesion of different cell types on the surfaces and support e.g. the endothelialisation process on cardio-vascular medical devices as e.g. stents or reduce the immunological response of the tissue after implantation. We summarise results from physical characterisation of the coatings (e.g. film thickness, roughness, electrical charge and hydrophilicity) combined with in-vitro biological studies on adhesion of HUVEC cells.

Keywords: cell adhesion; HUVEC; hydrophobicity; polyelectrolyte multilayer; roughness; stiffness

About the article

Published Online: 2018-09-22

Published in Print: 2018-09-01

Citation Information: Current Directions in Biomedical Engineering, Volume 4, Issue 1, Pages 217–220, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2018-0053.

Export Citation

© 2018 by Walter de Gruyter Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in