Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
See all formats and pricing
More options …

Model of SpO2 signal of the neonate

Veronika Huttova
  • Corresponding author
  • Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, Kladno, Czech Republic
  • Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle Strasse 17, Villingen-Schwenningen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jakub Rafl
  • Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
  • Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Knut Möller / Thomas E. Bachman
  • Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Kudrna
  • Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Rozanek
  • Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karel Roubik
  • Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-09-18 | DOI: https://doi.org/10.1515/cdbme-2019-0138

Abstract

The advantages of automatic control of the fraction of inspired oxygen in neonates have been documented in recently published clinical trials. Many control algorithms are available, but their comparison is missing in the literature. A mathematical model of neonatal oxygen transport could be a useful tool to compare and enhance both automatic control algorithms and manual control of fraction of inspired oxygen. Besides other components, the model of neonatal oxygen transport must include a module linking arterial (SaO2) and peripheral (SpO2) oxygen saturation. The pulse oximeter module must reflect issues of SpO2 measurement typical for clinical practice, such as overestimation of SpO2 over SaO2 documented by several studies, or inaccurate pulse oximeter readings due to high noise. The aim of this study was to describe both the bias between SaO2 and SpO2 and the noise, characteristic for continuous SpO2 recording, for a computer model of oxygenation of a premature infant. The SpO2-SaO2 bias, derived from available clinical data, describes a typical deviation of the SpO2 measurement as a function of the true SaO2 value in three different SaO2 intervals. The SpO2 measurement noise was considered as a random process that affects biased SpO2values at each time point with statistical properties estimated from SpO2 continuous recordings of 5 stable newborns. The results of the study will help to adjust a computer model of neonatal oxygenation to the real situations observed in the clinical practice.

Keywords: Measurement bias; neonatal model; noise model; oxygenation; pulse oximetry; SpO2

About the article

Published Online: 2019-09-18

Published in Print: 2019-09-01


Citation Information: Current Directions in Biomedical Engineering, Volume 5, Issue 1, Pages 549–552, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2019-0138.

Export Citation

© 2019 by Walter de Gruyter Berlin/Boston. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in