Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 1, Issue 1

Issues

Volume 13 (2015)

Hyperpolarizability of 6-vertex carboranes quantum chemical study

Kyrill Suponitsky
  • X-ray Structural Center, Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St., 28, 117813, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tatiana Timofeeva
Published Online: 2003-03-01 | DOI: https://doi.org/10.2478/BF02479253

Abstract

Structure and molecular first hyperpolarizability (β) of nitro-amino-substituted 6-vertex 1,6-carboranes are investigated by means of DFT calculations. The results obtained have revealed that the relative orientation of substituents with respect to the carborane cage influences bond lengths distribution in the cage, which leads to significant changes in the values of hyperpolarizabilities. Calculations with different basis sets have demonstrated that the value of β is not significantly affected by the choice of basis set. The calculated data shows that hyperpolarizability of carborane molecules substituted for carbon atoms is lower than when substituted for boron atoms. For latter molecule, the value of β is of the same order as that of para-nitroaniline molecule.

Keywords: First hyperpolarizability; 6-vertex carboranes; DFT

  • [1] D.S. Chemla and J. Zyss (Eds.): Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando, 1987. Google Scholar

  • [2] P.N. Prasad and D.J. Williams (Eds.): Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991. Google Scholar

  • [3] S.R. Marder, J.E. Sohn, G.D. Stucky (Eds.): Materials for Nonlinear Optics, ACS Symposium Series 455, American Chemical Society, Washington, 1991. Google Scholar

  • [4] L.-T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder: “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem., Vol. 95, (1991), pp. 10631–10643. http://dx.doi.org/10.1021/j100179a026CrossrefGoogle Scholar

  • [5] L.-T. Cheng, W. Tam, S.R. Marder, A.E. Stiegman, G. Rikken, C.W. Spangler: “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 2. A Study of Conjugation Dependences”, J. Phys. Chem., Vol. 95, (1991), pp. 10643–10652. http://dx.doi.org/10.1021/j100179a027CrossrefGoogle Scholar

  • [6] D.R. Kanis, M.A. Ratner, T.J. Marks: “Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. Quantum Chemical Aspects”, Chem. Rev., Vol. 94, (1994), pp. 195–242. http://dx.doi.org/10.1021/cr00025a007CrossrefGoogle Scholar

  • [7] K.J. Drost, A.K.-Y. Jen, V.P. Rao: “Designing Organic NLO Materials”, Chem Tech, (1995), pp. 16–24. Google Scholar

  • [8] V.P. Rao, A.K.-Y. Jen, J. Chandrasekhar, I.N.N. Namboothiri, A. Rathna: “The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules: Theoretical Investigation on Push-Pull Heteroaromatic Stilbenes”, J. Am. Chem. Soc., Vol. 118, (1996), pp. 12443–12448. http://dx.doi.org/10.1021/ja960136qCrossrefGoogle Scholar

  • [9] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, A. Persoons: “Second-Order Nonlinear Optical Materials: Recent Advances in Chromophore Design”, J. Mater. Chem., Vol. 7, (1997), pp. 2175–2189. http://dx.doi.org/10.1039/a703434bCrossrefGoogle Scholar

  • [10] E.M. Breitung, C.-F. Shu, R.J. McMahon: “Thiazole and Thiophene Analogues of Donor-Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure-Property Relationships”, J. Am. Chem. Soc., Vol. 122, (2000), pp. 1154–1160. http://dx.doi.org/10.1021/ja9930364CrossrefGoogle Scholar

  • [11] R.E. Williams: “The Polyborane, Carborane, Carbocation Continuum: Architectural Patterns”, Chem. Rev., Vol. 92, (1992), pp. 177–207. http://dx.doi.org/10.1021/cr00010a001CrossrefGoogle Scholar

  • [12] V.I. Bregadze: “Dicarba-closo-dodecaboranes C2B10H12 and Their Derivatives”, Chem. Rev., Vol. 92, (1992), pp. 209–223. http://dx.doi.org/10.1021/cr00010a002CrossrefGoogle Scholar

  • [13] J. Plešek: “Potential Applications of the Boron Cluster Compounds”, Chem. Rev., Vol. 92, (1992), pp. 269–278. http://dx.doi.org/10.1021/cr00010a005CrossrefGoogle Scholar

  • [14] B.M. Gimarc and M. Zhao: “Three-Dimensional Hückel Theory for closo-Carboranes”, Inorg. Chem., Vol. 35, (1996), pp. 825–834. http://dx.doi.org/10.1021/ic9506668CrossrefGoogle Scholar

  • [15] D.M. Murphy, D.M.P. Mingos, J.M. Forward: “Synthesis of Icosahedral Carboranes for Second-harmonic Generation. Part 1”, J. Mater. Chem., Vol. 3, (1993), pp. 67–76. http://dx.doi.org/10.1039/jm9930300067CrossrefGoogle Scholar

  • [16] D.M. Murphy, D.M.P. Mingos, J.L. Haggitt, H.R. Powell, S.A. Westcott, T.B. Marder, N.J. Taylor, D.R. Kanis: “Synthesis of Icosahedral Carboranes for Second-harmonic Generation. Part 2”, J. Mater. Chem., Vol. 3, (1993), pp. 139–148. http://dx.doi.org/10.1039/jm9930300139CrossrefGoogle Scholar

  • [17] J. Abe, N. Nemoto, Y. Nagase, Y. Shirai, T. Iyoda: “A New Class of Carborane Compounds for Second-Order Nonlinear Optics: Ab Initio Molecular Orbital Study of Hyperpolarizabilities for 1-(1′, X′-Dicarba-closo-dodecaborane-1′-yl)-closo-dodecaborate Dianion (X = 2, 7, 12)”, Inorg. Chem., Vol. 37, (1998), pp. 172–173. http://dx.doi.org/10.1021/ic970809lGoogle Scholar

  • [18] B. Grüner, Z. Janoušek, B. King, J.N. Woodford, C.H. Wang, V. Všeteka, J. Michl: “Synthesis of 12-Substituted 1-Carba-closo-dodecaborate Anions and First Hyperpolarizability of the 12-C7H 6+−CB11H 11− Ylide”, J. Am. Chem. Soc., Vol. 121, (1999), pp. 3122–3126. http://dx.doi.org/10.1021/ja982368qGoogle Scholar

  • [19] D.G. Allis and J.T. Spencer: “Polyhedral-Based Nonlinear Optical Materials. Part 1. Theoretical Investigation of Some New High Nonlinear Optical Response Compounds Involving Carboranes and Charged Aromatic Donors and Acceptors”, J. Organomet. Chem., Vol. 614-615, (2000), pp. 309–313. http://dx.doi.org/10.1016/S0022-328X(00)00589-1CrossrefGoogle Scholar

  • [20] D.G. Allis and J.T. Spencer: “Polyhedral-Based Nonlinear Optical Materials. 2. Theoretical Investigation of Some New High Nonlinear Optical Response Compounds Involving Polyhedral Bridges with Charged Aromatic Donors and Acceptors”, Inorg. Chem., Vol. 40, (2001), pp. 3373–3380. http://dx.doi.org/10.1021/ic0007761CrossrefGoogle Scholar

  • [21] J. Taylor, J. Caruso, A. Newlon, U. Englich, K. Ruhlandt-Senge, J.T. Spencer: “Polyhedral-Based Nonlinear Optical Materials. 3.1. Synthetic Studies of Cyclopentadiene- and Cycloheptatriene-Substituted Polyhedral Compounds: Synthesis of 1,12-[(C7H7)C2B10H10(C5H3Me2)] and Related Species”, Inorg. Chem., Vol. 40, (2001), pp. 3381–3388. http://dx.doi.org/10.1021/ic000777tCrossrefGoogle Scholar

  • [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzales, J.A. Pople: Gaussian 94, Edition E.2, Gaussian Inc., Pittsburgh, PA, 1995. Google Scholar

  • [23] H. Reis, M.G. Papadopoulos, I. Boustani: “DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters Bn (n=3–8, 10)”, Int. J. Quant. Chem., Vol. 78, (2000), pp. 131–135. http://dx.doi.org/10.1002/(SICI)1097-461X(2000)78:2<131::AID-QUA6>3.0.CO;2-3CrossrefGoogle Scholar

  • [24] A. Franken, W. Preetz, M. Rath, K.-F. Hesse: “Preparation of mononitropentahydrohexaborate(2-) and crystal structure of M2[B6H5(NO2)], M=K, Cs”, Z. Naturforsch., Teil B, Vol. 48, (1993), pp. 1727–1731. Google Scholar

  • [25] C. Drewes and W. Preetz: “Synthesis and Spectroscopic Characterization of Methylnitro-closo-hexaborates and Crystal Structures of cis-(Ph4As)2[B6H4(CH3)(NO2)], fac-(Ph4As)2[B6H3(CH3)(NO2)2]· CH3CN and mer-(Ph4P)2[B6H3(CH3)(NO2) 2c ]”, Z. Naturforsch., Teil B, Vol. 54, (1999), pp. 349–356. Google Scholar

  • [26] C. Drewes and W. Preetz: “Synthesis, Spectra and Crystal Structure of cis-Monobenzylmononitrotetrahydro-closo-hexaborate(2-)”, Z. Naturforsch., Teil B, Vol. 54, (1999), pp. 1219–1221. Google Scholar

  • [27] A. Domenicano: In: A. Domenicano and I. Hargittai (Ed.): Accurate Molecular Structures: Their Determination and Importance, Oxford University Press, Oxford and New York, 1992. Google Scholar

About the article

Published Online: 2003-03-01

Published in Print: 2003-03-01


Citation Information: Open Chemistry, Volume 1, Issue 1, Pages 1–9, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/BF02479253.

Export Citation

© 2003 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jan M. Pawlowski
Annals of Physics, 2007, Volume 322, Number 12, Page 2831
[2]
Igor Boettcher, Jan M. Pawlowski, and Sebastian Diehl
Nuclear Physics B - Proceedings Supplements, 2012, Volume 228, Page 63

Comments (0)

Please log in or register to comment.
Log in