Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 1, Issue 1

Issues

Volume 13 (2015)

Epicatechin-copper 9II) complexes: Damage of small intestinal epithelium

Ruxandra Stavrescu / Takahide Kimura / Fumiko Hayakawa
  • Department of Life Style Studies, School of Human Cultures, The University of Shiga Prefecture, Hikone, 522-8533, Shiga, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takashi Ando
Published Online: 2003-03-01 | DOI: https://doi.org/10.2478/BF02479256

Abstract

Four epicatechins [(−)-epicatechin (EC), (−)-epicatechin gallate (ECg), (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCg)] and their corresponding copper complexes were compared with regard to their effect on the viability of Caco-2 colon cancer cells in vitro, measured by 3-(4,5-dimethylthyazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. The viability of Caco-2 cells exposed to EC (1 mM), ECg (1 mM) or EGC (1mM) respectively, for 30 min, was comparable to that of the saline control group, while EGCg (1 mM) apparently enhanced cellular activity. in contrast, the cells treated with epicatechin-copper complexes were killed. Bivalent copper 91 mM), in similar conditions, did not affect the cells. No cell leakage or other histological differences were observed, implying a rapid cell death. The suggested mechanism of killing is by OH radical attack, produced in the presence of epicatechin-copper complexes, but not in the presence of either of the epicatechins or copper alone. The reaction sites are discussed.

Keywords: Caco-2; copper; epicatechin; intestinal absorption; MTT assay; oxidative stress; Wilson's disease

  • [1] J. Peterson and J. Dwyer: “Flavonoids: dietary occurrence and biochemical activity”, Nutr. Res., Vol. 18, (1998), pp. 1995–2018. http://dx.doi.org/10.1016/S0271-5317(98)00169-9CrossrefGoogle Scholar

  • [2] C.A. Rice-Evans, N.J. Miller, G. Paganga: “Antioxidant properties of phenolic compounds”, Trends in Plant Science, Vol. 2, (1997), pp. 152–159. http://dx.doi.org/10.1016/S1360-1385(97)01018-2CrossrefGoogle Scholar

  • [3] J.B. Harborne and C.A. Williams: “Advances in flavonoid research since 1992”, Phytochemistry, Vol. 55, (2000), pp. 481–504. http://dx.doi.org/10.1016/S0031-9422(00)00235-1CrossrefGoogle Scholar

  • [4] G. Qiong, Z. Baolu, L. Meifen, S. Shengrong, X. Wenjuan: “Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes”, Biochim. Biophys. Acta, Vol. 1304, (1996), pp. 210–222. Google Scholar

  • [5] S.A. Aherne and N.M. O'Brien: “Mechanism of protection by the flavonoid, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells”, Free Radic. Biol. Med., Vol. 29, (2000), pp. 507–514. http://dx.doi.org/10.1016/S0891-5849(00)00360-9CrossrefGoogle Scholar

  • [6] P. Leanderson, A.O. Faresjö, C. Tagesson: “Green Tea Polyphenols Inhibit Oxidant-Induced DNA Strand Breakage in Cultured Lung Cells”, Free Radic. Biol. Med., Vol. 23, (1997), pp. 235–242. http://dx.doi.org/10.1016/S0891-5849(96)00590-4CrossrefGoogle Scholar

  • [7] K. Osada, M. Takahashi, S. Hoshina, M. Nakamura, S. Nakamura, M. Sugano: “Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro”, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., Vol. 128, (2001), pp. 153–164. http://dx.doi.org/10.1016/S1532-0456(00)00192-7CrossrefGoogle Scholar

  • [8] C.J. Dufresne and E.R. Farnworth: “A review of latest research findings on the health promotion properties of tea”, J. Nutr. Biochem., Vol. 12, (2001), pp. 404–421. http://dx.doi.org/10.1016/S0955-2863(01)00155-3CrossrefGoogle Scholar

  • [9] R. Amarowicz and F. Shahidi: “A rapid chromatographic method for separation of individual catechins from green tea”, Food Res. Int., Vol. 29, (1996), pp. 71–76. http://dx.doi.org/10.1016/0963-9969(95)00048-8CrossrefGoogle Scholar

  • [10] C. Kies: “Food sources of dietary copper”, Adv. Exp. Med. Biol., Vol. 258, (1989), pp. 1–20. Google Scholar

  • [11] A. Czlonkowska, J. Gajda, M. Rodo: “Effects of long-term treatment in Wilson's disease with D-penicillamine and zinc sulfate”, J. Neurol., Vol. 243, (1996), pp. 269–73. http://dx.doi.org/10.1007/BF00868525CrossrefGoogle Scholar

  • [12] K. Ishige, D. Schubert, Y. Sagara: “Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms”, Free Radic. Biol. Med., Vol. 30, (2001), pp. 433–446. http://dx.doi.org/10.1016/S0891-5849(00)00498-6CrossrefGoogle Scholar

  • [13] J.F.B. Mercer: “The molecular basis of copper-transport diseases”, Trends Mol. Med., Vol. 7, (2001), pp. 64–69. http://dx.doi.org/10.1016/S1471-4914(01)01920-7CrossrefGoogle Scholar

  • [14] S. Kameoka, P. Leavitt, C. Chang, S.-M. Kuo: “Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids”, Cancer Lett., Vol. 146, (1999), pp. 161–167. http://dx.doi.org/10.1016/S0304-3835(99)00253-0CrossrefGoogle Scholar

  • [15] S.-M. Kuo, C.T. Huang, P. Blum, C. Chang: “Quercetin cumulatively enhances copper induction of metallothionein in intestinal cells”, Biol. Trace Elem. Res., Vol. 84, (2001), pp. 1–10. http://dx.doi.org/10.1385/BTER:84:1-3:001CrossrefGoogle Scholar

  • [16] A.N. Kong, E. Owuor, R. Yu, V. Hebbar, C. Chen, R. Hu, S. Mandlekar: “Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE)”, Drug Metab. Rev., Vol. 33, (2001), pp. 255–71. http://dx.doi.org/10.1081/DMR-120000652CrossrefGoogle Scholar

  • [17] R. Yu, J.J. Jiao, J.L. Duh, K. Gudehithlu, T.H. Tan, A.N. Kong: “Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression”, Carcinogenessis, Vol. 18, (1997), pp. 451–456. http://dx.doi.org/10.1093/carcin/18.2.451CrossrefGoogle Scholar

  • [18] B. Annabi, M.-P. Lachambre, N. Bousquet-Gagnon, M. Pagé, D. Gingras, R. Béliveau: “Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells”, Biochim. Biophys. Acta, Vol. 1542, (2002), pp. 209–220. http://dx.doi.org/10.1016/S0167-4889(01)00187-2CrossrefGoogle Scholar

  • [19] N.J. Miller, C. Castelluccio, L. Tijburg, C. Rice-Evans: “The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators?”, FEBS Lett., Vol. 392, (1996), pp. 40–44. http://dx.doi.org/10.1016/0014-5793(96)00780-6CrossrefGoogle Scholar

  • [20] R. Walker: “Modulation of toxicity by dietary and environmental factors”, Environ. Toxicol. Pharmacol., Vol. 2, (1996), pp. 181–188. http://dx.doi.org/10.1016/S1382-6689(96)00052-XCrossrefGoogle Scholar

  • [21] S.-M. Kuo, P.S. Leavitt, C.P. Lin: “Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells”, Biol. Trace Elem. Res., Vol. 62, (1998), pp. 135–53. CrossrefGoogle Scholar

  • [22] N. Yamanaka, O. Oda, S. Nagao: “Green tea catechins such as (−)-epicatechin and (−)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase”, FEBS Lett., Vol. 401, (1997), pp. 230–234. http://dx.doi.org/10.1016/S0014-5793(96)01455-XCrossrefGoogle Scholar

  • [23] T. Kimura, N. Hoshino, A. Yamaji, F. Hayakawa, T. Ando: “Bactericidal activity of catechin-copper (II) complexes on Esterichia coli ATCC11775 in the absence of hydrogen peroxide”, Lett. Appl. Microbiol., Vol. 27, (1998), pp. 328–330. http://dx.doi.org/10.1046/j.1472-765X.1998.00458.xCrossrefGoogle Scholar

  • [24] M. Mochizuki, S. Yamazaki, K. Kano, T. Ikeda: “Kinetic analysis and mechanistic aspects of autoxidation of catechins”, Biochim. Biophys. Acta, Vol. 1569, (2002), pp. 35–44. Google Scholar

  • [25] P.C.H. Hollman and M.B. Katan: “Dietary Flavonoids: Intake, Health Effects and Bioavailability”, Food Chem. Toxicol., Vol. 37, (1999), pp. 937–942. http://dx.doi.org/10.1016/S0278-6915(99)00079-4CrossrefGoogle Scholar

  • [26] P. Arthursson: “Epithelial transport of drugs in cell culture. I. A. model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells”, J. Pharm. Sci., Vol. 79 (1980), pp. 476–482. http://dx.doi.org/10.1002/jps.2600790604CrossrefGoogle Scholar

  • [27] T. Mosmann: “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Citotoxicity Assays”, Immunol. Methods, Vol. 65, (1983), pp. 55–63. http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [28] M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Czerwinsky, D.L. Fine, B.J. Abott, J.G. Mayo, R.H. Shoemaker, M.R. Boyd: “Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay”, Cancer Res., Vol. 48, (1998), pp. 589–601. Google Scholar

  • [29] Y. Zhao, J. Cao, H. Ma, J. Liu: “Apoptosis induced by tea polyphenols in HL-60 cells”, Cancer Lett., Vol. 121, (1997), pp. 163–167. http://dx.doi.org/10.1016/S0304-3835(97)00348-0CrossrefGoogle Scholar

  • [30] H. Wang, G.J. Provan, K. Helliwell: “Tea flavonoids: their functions, utilization and analysis”, Trends Food Sci. Tech., Vol. 11, (2000), pp. 152–160. http://dx.doi.org/10.1016/S0924-2244(00)00061-3CrossrefGoogle Scholar

  • [31] I.R. Record and J.M. Lane: “Simulated intestinal digestion of green and black teas”, Food Chem., Vol. 73, (2001), pp. 481–486. http://dx.doi.org/10.1016/S0308-8146(01)00131-5CrossrefGoogle Scholar

  • [32] Y. Shimada, H. Goto, T. Kogure, N. Shibahara, I. Sakakibara, H. Sasaki, K. Terasawa: “Protective Effect of Phenolic Compounds Isolated from the Hooks and Stems of Uncaria sinensis on the Glutamate-Induced Neuronal Death”, Am. J. Chin. Med., Vol. 29, (2001), pp. 173–180. http://dx.doi.org/10.1142/S0192415X01000198CrossrefGoogle Scholar

  • [33] F.P. Altman: “Studies on the Reduction of Tetrazolium Salts. III. The products of Chemical and Enzymic Reduction”, Histochemistry, Vol. 38, (1974), pp. 155–171. http://dx.doi.org/10.1007/BF00499663CrossrefGoogle Scholar

  • [34] X. Tan, D. Hu, S. Li, Y. Han, Y. Zhang, D. Zhou: “Differences of four catechins in cell cycle arrest and induction of apoptosis in LoVo cells”, Cancer Lett., Vol. 158, (2000), pp. 1–6. http://dx.doi.org/10.1016/S0304-3835(00)00445-6CrossrefGoogle Scholar

  • [35] J. Grooten, V. Goossens, B. Vanhaesebroeck, W. Fiers: “Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumor necrosis factor-induced Citotoxicity”, Cytokine, Vol. 5, (1993), pp. 546–555. http://dx.doi.org/10.1016/S1043-4666(05)80003-1CrossrefGoogle Scholar

  • [36] A.G.E. Pearse: Histochemistry: Theoretical and Applied, Churchill Livingstone, London Press, Edinburgh, 1972, pp. 881–920. Google Scholar

  • [37] Y. Lin, D.A. Peterson, H. Kimura, D. Schubert: “Mechanism of cellular 3(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction”, J. Neurochem., Vol. 69, (1997), pp. 581–593. Google Scholar

  • [38] Y. Liu: “Understanding the biological activity of amyloid proteins in vitro: from inhibited cellular MTT reduction to altered cellular cholesterol homeostasis”, Prog. Neuropsychopharmacol. Biol. Psychiatry, Vol. 23, (1999), pp. 377–395. http://dx.doi.org/10.1016/S0278-5846(99)00003-2CrossrefGoogle Scholar

  • [39] Z.Y. Chen and P.T. Chan: “Antioxidative activity of green tea catechins in canola oil”, Chem. Phys. Lipids., Vol. 82, (1996), pp. 163–172. http://dx.doi.org/10.1016/0009-3084(96)02587-XCrossrefGoogle Scholar

  • [40] C.A. Rice-Evans, N.J. Miller, G. Paganga: “Structure-antioxidant activity relationships of flavonoids and phenolic acids”, Free Rad. Biol. Med., Vol. 20, (1996), pp. 933–956. http://dx.doi.org/10.1016/0891-5849(95)02227-9CrossrefGoogle Scholar

  • [41] G. Cao, E. Sofic, R.L. Prior: “Antioxidant and prooxidant Behavior of Flavonoids: Structure-Activity Relationships”, Free Rad. Biol. Med., Vol. 22, (1997), pp. 749–760. http://dx.doi.org/10.1016/S0891-5849(96)00351-6CrossrefGoogle Scholar

  • [42] D.D. Schramm, H.E. Collins, J.B. German: “Flavonoid transport by mammalian endothelial cells”, J. Nutr. Biochem., Vol. 10, (1999), pp. 193–197. http://dx.doi.org/10.1016/S0955-2863(98)00104-1CrossrefGoogle Scholar

  • [43] G. Williamson, A.J. Day, G.W. Plumb, D. Couteau: “Human metabolic pathways of dietary flavonoids and cinnamates”, Biochem. Soc. Trans., Vol. 28, (2000), pp. 16–21. Google Scholar

  • [44] J.B. Vaidyanathan and T. Walle: “Glucuronidation and sulfation of the tea flavonoid (−)-epicatechin by the human and rat enzymes”, Drug Metab. Dispos., Vol. 30, (2002), pp. 897–903. http://dx.doi.org/10.1124/dmd.30.8.897CrossrefGoogle Scholar

  • [45] J.B. Vaidyanathan and T. Walle: “Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2”, Pharm. Res., Vol. 18, (2001), pp. 1420–1425. http://dx.doi.org/10.1023/A:1012200805593CrossrefGoogle Scholar

  • [46] J.B. Vaidyanathan and T. Walle: “Apical transporter MRP2, a barrier for the intestinal absorption of the anticancer tea flavonoid epicatechin”, Biochim. Biophys. Acta, Vol. 1542, (2002), pp. 149–159. http://dx.doi.org/10.1016/S0167-4889(01)00175-6Google Scholar

  • [47] F. Hayakawa, T. Kimura, H. Sohmiya, M. Fujita, N. Hoshino, T. Ando: “The correlation of structure and activity of phenolic compounds to DNA cleavage in the presence of cupric ion (in Japanese)”, Nippon Nogeikagaku Kaishi, Vol. 72, (1998), pp. 759–761. Google Scholar

  • [48] J.E. Brown, H. Khodr, R.C. Hider, C.A. Rice-Evans: “Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties”, Biochem. J., Vol. 330, (1998), pp. 1173–1178. Google Scholar

  • [49] F.L. Tobiason, R.W. Hemingway, G. Vergoten: Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, Modeling the conformation of polyphenols and their complexation with polypeptides; self-association of catechin and its complexation with l-proline glycine oligomers, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 527–544. Google Scholar

  • [50] F.L. Tobiason, R.W. Hemingway, G. Vergoten: Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, Interaction of flavonoids with peptides and proteins and conformations of dimeric flavonoids in solution, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 509–526. Google Scholar

About the article

Published Online: 2003-03-01

Published in Print: 2003-03-01


Citation Information: Open Chemistry, Volume 1, Issue 1, Pages 35–52, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/BF02479256.

Export Citation

© 2003 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. A. Mashentseva, T. S. Seytembetov, S. M. Adekenov, B. I. Tuleuov, O. P. Loiko, and A. I. Khalitova
Russian Journal of General Chemistry, 2011, Volume 81, Number 1, Page 96

Comments (0)

Please log in or register to comment.
Log in