Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 1, Issue 1

Issues

Volume 13 (2015)

Modeling and simulation of free radical polymerization of styrene under semibatch reactor conditions

Silvia Curteanu
  • Department of Chemical Engineering, Technical University “Gh. Asachi”, IASI, B-dul D. Mangeron No. 71A, 6600 IASI, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2003-03-01 | DOI: https://doi.org/10.2478/BF02479259

Abstract

The first part of this approach is concerned with the elaboration of a radical polymerization model of styrenne, based on a kinetic diagram that includes chemical and thermal initiation, propagation, termination by recombination and chain transfer to the monomer. Furthermore, volume contraction during polymerization is considered, as well as the gel and glass effects. The mathematical formalism that describes the model in terms of moments is explored in detail. The model was then used to predict the changes in monomer conversion and molecular weight after intermediate addition of initiator and monomer. The results of this operation are dependent on the conditions of the reaction mass, quantity, and moment of substance addition. Therefore, the simulations were performed at different times with respect to the gel effect; before, during and after this phenomenon, and also with respect to different temperatures and initiators. Increasing the initiator concentration before the gel effect leads to an earlier appearance of the phenomenon and to a decrease in molecular weight. The ratio $$\bar M_w /\bar M_n $$ reveals a polydispersity index smaller for the intermediate addition of initiator. No significant changes take place during or after the gel effect. If along with the initiator, unreacted monomver (used to dissolve the initiator) enters the reactor, a small dip in conversion is observed. The general conclusion of this paper reveals the intermediate addition of initiator as a method to control polymer properties and to prevent the “dead-end” polymerization of styrene.

Keywords: free radical polymerization; polystyrene; modeling and simulation; intermediate addition of initiator

  • [1] D.S. Achilias and C. Kiparissides: “Development of a General Mathematical Framework for Modeling Diffusion-Controled Free Radical Polymerization Reactions”, Macromolecules, Vol. 25, (1992), pp. 3739–3750. http://dx.doi.org/10.1021/ma00040a021CrossrefGoogle Scholar

  • [2] R.G. Gilbert, J.F. Anstey, N. Subramanian, M.J. Monteiro: “Emulsion Polymerization as a novel tool in controlled free-radical polymerization”, Polym. Prepr., Vol. 40, (1999), pp. 297–298. Google Scholar

  • [3] A. Sirohi and K. Ravindranath: “Modeling of Ionic Polymerization Processes: Styrene and Butadiene”, AIChE, Spring 99 Meeting, Houston, 1999. Google Scholar

  • [4] K.J. Kim: Modeling and Control of Continuous Free Radical Polymerization Reactors, Thesis (PhD), University of Maryland, 1991. Google Scholar

  • [5] S. Curteanu, V. Bulacovschi, R. Diaconescu: “Modeling of Free Radical Polymerization of Styrene Using a Binary Mixture of Initiarors”, Proc. Rom. Acad., Vol. 3, (2001), pp. 207–213. Google Scholar

  • [6] S. Curteanu and V. Bulacovschi: “Modeling of Free Radical Polymerization of Styrene Using a Binary Mixture of Initiators and Isothermal Steps of Temperature”, Rev. Roum. Chim., in press. Google Scholar

  • [7] W.Y. Chiu, G.M. Carratt, D.S. Soong: “A Computer Model for the Gel effect in Free Radical Polymerization”, Macromolecules, Vol. 16, (1983), pp. 348–357. http://dx.doi.org/10.1021/ma00237a002CrossrefGoogle Scholar

  • [8] M. Constantinescu, V. Bulacovschi, S. Curteanu: “Free Radical Polymerization of Styrene. Modeling and Simulation”, Bul. Polyt. Inst. Iasi, Tom XLIII (XLVII), 3–4, (1997), pp. 91–103. Google Scholar

  • [9] G.A. O'Neil, M.B. Wisnudel, J.M. Torkelson: “An Evaluation of Free Volume Approaches to Describe the Gel Effect in Free Radical Polymerization”, Macromolecules, Vol. 31, (1998), pp. 4537–4545. http://dx.doi.org/10.1021/ma9713670CrossrefGoogle Scholar

About the article

Published Online: 2003-03-01

Published in Print: 2003-03-01


Citation Information: Open Chemistry, Volume 1, Issue 1, Pages 69–90, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/BF02479259.

Export Citation

© 2003 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Venkat Reddy Regatte, Hanyu Gao, Ivan A. Konstantinov, Steven G. Arturo, and Linda J. Broadbelt
Macromolecular Theory and Simulations, 2014, Volume 23, Number 9, Page 564
[2]
D. P. Vent, V. P. Savel’yanov, A. G. Lopatin, and M. A. Safin
Theoretical Foundations of Chemical Engineering, 2014, Volume 48, Number 3, Page 332
[3]
Weijie Lin, Lorenz T. Biegler, and Annette M. Jacobson
Macromolecular Theory and Simulations, 2011, Volume 20, Number 2, Page 146
[4]
Dimitris S. Achilias
Macromolecular Theory and Simulations, 2007, Volume 16, Number 4, Page 319
[5]
Silvia Curteanu and Corneliu Petrila
International Journal of Quantum Chemistry, 2006, Volume 106, Number 6, Page 1445

Comments (0)

Please log in or register to comment.
Log in