Jump to ContentJump to Main Navigation
Show Summary Details

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2015: 1.207
5-year IMPACT FACTOR: 1.272

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841
Impact per Publication (IPP) 2015: 1.164

Open Access
Online
ISSN
2391-5420
See all formats and pricing
Volume 2, Issue 4 (Dec 2004)

Issues

Kinetic study of catalase adsorption on disperse carbonaceous matrices

Elena Horozova
  • Department of Physical Chemistry, University of Plovdiv, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria
  • Email:
/ Nina Dimcheva
  • Department of Physical Chemistry, University of Plovdiv, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria
  • Email:
Published Online: 2004-12-01 | DOI: https://doi.org/10.2478/BF02482726

Abstract

The effect of the main factors known to govern the kinetic regularities of enzyme adsorption, such as enzyme solution concentration, temperature, pH, specific surface of the adsorbent, etc., were studied. Two kinds of disperse carbonaceous materials-activated carbon NORIT and carbon black PM-100, were used as matrices for enzyme immobilization. For both immobilization matrices studied, the amount of the adsorbed enzyme was found to reach saturation at catalase (CAT) enzyme concentrations exceeding 20 mg·mL−1 (∼100 μM). The pH of the solution affected the adsorption capacities of the selected immobilization matrices; larger amounts of CAT adsorbed were estimated in neutral and alkaline solutions than under acidic conditions for enzyme immobilization. UV-spectrophotometry was employed as a basic analytical approach in this study.

Keywords: Catalase; enzyme adsorption; optimization

  • [1] I. V. Berezin, N. L. Kliachko, A. V. Levashev, K. Martinek, V. V. Mojaev and Y. Khmelnitskii: Kinetic regularities in the catalysis with immobilized enzymes, Vishaya shkola, Moscow (in Russian), 1987.

  • [2] “Amperometric biosensors” In: D. Wilson (Ed.): Biosensors-fundamentals and applications, Mir, Moscow, 1992, (in Russian).

  • [3] T. Tatsuma, T. Watanabe and S. Tatsuma: “Substrate-purging enzyme electrodes. Peroxidase/catalase electrodes for H2O2 with an improved upper-sensing limit”,Anal. Chem., Vol. 66, (1994), pp. 290–294. http://dx.doi.org/10.1021/ac00074a017 [Crossref]

  • [4] S. Akgol and E. Dinckaya: “A novel biosensor for specific determination of hydrogenperoxide: catalase enzyme electrode based on dissolved oxygen probe”,Talanta, Vol. 48, (1999), pp. 363–367. http://dx.doi.org/10.1016/S0039-9140(98)00255-0 [Crossref]

  • [5] E. Akyilmaz and E. Dinckaya: “Development of a catalase based biosensor for alcoholdetermination in beer samples”,Talanta, Vol. 61, (2003), pp. 113–118. http://dx.doi.org/10.1016/S0039-9140(03)00245-5 [Crossref]

  • [6] V. C. Gekas: “Artificial membranes as carriers for the immobilization of biocatalysts”,Enzyme Microb. Technol., Vol. 8, (1986), pp. 450–460. http://dx.doi.org/10.1016/0141-0229(86)90046-3 [Crossref]

  • [7] S. Akgol, Y. Kacar, S. Ozkara, H. Yavuz, A. Denizli and M. Y. Arica: “Immobilization of catalase via adsorption onto L-histidine grafted pHEMA based membrane”,J. Mol. Catalysis B-Enzymatic, Vol. 15, (2001), pp. 197–206. http://dx.doi.org/10.1016/S1381-1177(01)00029-7 [Crossref]

  • [8] U. Chatterjee, A. Kumar and G.G. Sanwal: “Goat liver catalase immobilized on various solid supports”,J. Ferment. Bioeng., Vol. 70, (1990), pp. 423–430. http://dx.doi.org/10.1016/0922-338X(90)90127-I [Crossref]

  • [9] E. Horozova, N. Dimcheva and Z. Jordanova: “Adsorption, catalytic and electrochemical activity of catalase immobilized on carbon materials”,Z. Naturforsch., Vol. 52C, (1997), pp. 632–644.

  • [10] A. Paar, S. Costa, T. Tzanov, M. Gudelj, K.-H. Robra, A. Cavaco-Paulo and G. M. Gubitz: “Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents”,J. Biotechnol., Vol. 89, (2001), pp. 147–153. http://dx.doi.org/10.1016/S0168-1656(01)00305-4 [Crossref]

  • [11] P. Atanassov, V. A. Bogdanovskaya, I. Iliev, M. R. Tarassevich and V. Vorob'ev: “Redox reactions of glucose oxidase on carbonaceous materials”,Russian Journal of Electrochemistry, Vol. 25, (1989), pp. 1480–1486.

  • [12] V. A. Bogdanovskaya and M. R. Tarasevich: “Advances in bioelectrocatalysis”,Itogi Nauki I Tekhniki, series Electrochemistry, Vol. 27, (1988), pp. 111–157, (in Russian).

  • [13] E. Ferapontova and L. Gorton: “Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase”,Electrochem. Commun., Vol. 3, (2002), pp. 767–774. http://dx.doi.org/10.1016/S1388-2481(01)00259-4 [Crossref]

  • [14] B. B. Damaskin and O. A. Petrii: An introduction in the electrochemical kinetics., 2nd Ed, Vishaya shcola, Moscow, 1983, (in Russian).

  • [15] E. Horozova, N. Dimcheva and Z. Jordanova: “Peroxidase-like activity of catalase immobilized on carbon materials”,Z. Naturforsch., Vol. 53C, (1998), pp. 863–866.

  • [16] E. Horozova, N. Dimcheva and Z. Jordanova: “Catalytic decomposition of 3-chloroperoxybenzoic acid by immobilized catalase in a non-aqueous medium”,Z. Natufrosch., Vol. 55C, (2000), pp. 55–59.

  • [17] N. Dimcheva, E. Horozova and Z. Jordanova: “Decomposition of Cumene Hydroperoxide in Acetonitrile Catalyzed by Immobilized Catalase.” Bulgarian Chemistry and Industry, (2004), (in press).

  • [18] E. Horozova, N. Dimcheva and Z. Jordanova: “Enzyme-catalyzed decomposition of dibenzoyl peroxide in organic solvents”,Z. Naturforsch., Vol. 56C, (2001), pp. 553–558.

  • [19] E. Horozova, N. Dimcheva and Z. Jordanova: “Catalytic activity of immobilized catalase on decomposition of 3-chloroperoxybenzoic acid in tetrachloromethane”, In: I. Mitov, (Ed.): Proc. of the 9-th International Symposium on Heterogeneous Catalysis, Varna, Bulgaria, Acad. Publ. House, Sofia, 2000, pp. 259–264.

  • [20] M. N. Jones, P. Manley, P. J. W. Midley and A. E. Wilkinson: “Dissociation of bovineand bacterial catalase by sodium n-dodecyl sulphate”,Biopolymers, Vol. 21, (1982), pp. 1435–1450. http://dx.doi.org/10.1002/bip.360210712 [Crossref]

About the article

Published Online: 2004-12-01

Published in Print: 2004-12-01


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/BF02482726. Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. Rubenwolf, S. Sané, L. Hussein, J. Kestel, F. von Stetten, G. Urban, M. Krueger, R. Zengerle, and S. Kerzenmacher
Applied Microbiology and Biotechnology, 2012, Volume 96, Number 3, Page 841
[2]
M. Yakup Arıca and Gülay Bayramoğlu
Journal of Molecular Catalysis B: Enzymatic, 2006, Volume 38, Number 3-6, Page 131

Comments (0)

Please log in or register to comment.
Log in