Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2005

Reactions of substituted furo[3,2-b]pyrrole-5-carboxhydrazides and their biological activity

  • Renata Ga<parová EMAIL logo , Daniel Zbojek , Margita Lácová , Katarína Král'ová , Anton Gatial , Branislav Horváth and Alžbeta Krutošíková
From the journal Open Chemistry

Abstract

The reactions of substituted furo[3,2-b]pyrrole-5-carboxhydrazides 1 with 5-arylfuran-2-carboxaldehydes 2, 4,5-disubstituted furan-2-carboxaldehydes 3 and thiophene-2-carboxaldehyde 4 has been studied. The advantage of microwave irradiation on some of these reactions was reflected in the reduced reaction time and increased yields. Reactions of 1 with 4-substituted 1,3-oxazol-5(4H)-ones 11 led to diacylhydrazines 13 or to imidazole derivatives 14 depending on the temperature. 1,2,4-Triazole-3-thione 17 was synthesized by two-step reaction of 1 with phenylisothiocyanate and subsequent base-catalyzed cyclization of thiosemicarbazide 16. The effects of hydrazones 5–10 on inhibition of photosynthetic electron transport in spinach chloroplasts and chlorophyll content in the antialgal suspensions of Chlorella vulgaris were investigated.

[1] E. Jedlovská and E. Gavláková: “Synthesis of 2,3-Disubstituted 1,3,4-Oxadiazoles and their Precursors”, Collect. Czech. Chem. Commun. Vol. 59, (1994), pp. 1892–1896. http://dx.doi.org/10.1135/cccc1994189210.1135/cccc19941892Search in Google Scholar

[2] E. Jedlovská and J. Leško: “A Simple One-pot Procedure for the Synthesis of 1,3,4-Oxadiazoles”, Synth. Commun., Vol. 24, (1994), pp. 1879–1885. Search in Google Scholar

[3] L.H. Cao and P.Y. Cui: “Synthesis of 2-Diyydrooxadiazolinyl Chromones”, J. Chinese Chem. Soc., Vol. 50, (2003), pp. 903–908. Search in Google Scholar

[4] A. Obreza and U. Urleb: “A new Synthesis of Substituted Benzaldehyde N-[(E)-Phenylmethylidene] hydrazones”, Acta Chim. Slov., Vol. 49, (2002), pp. 605–611. Search in Google Scholar

[5] H.M. El-Shaaer, P. Foltínová, M. Lácová, J. Chovancová and H. Stankovičová: “Synthesis, Antimycobacterial Activity and Bleaching Effect of Some Reaction Products of 4-Oxo-4H-benzopyran-3-carboxaldehydes with Aminobenzothiazoles and Hydrazides”, Il Farmaco, Vol. 53, (1998), pp. 224–232. http://dx.doi.org/10.1016/S0014-827X(98)00015-910.1016/S0014-827X(98)00015-9Search in Google Scholar

[6] P. Foltínová, M. Lácová and D. Loos: “Activity of Some 3-Formylchromone Derivatives on the Chloroplast-free Mutant in Euglena gracillis”, Il Farmaco, Vol. 55, (2000), pp. 21–26. http://dx.doi.org/10.1016/S0014-827X(99)00114-710.1016/S0014-827X(99)00114-7Search in Google Scholar

[7] M.M. Dutta, B.N. Goswami and J.C.S. Kataky: “Studies on Biologically Active Heterocycles. Part I. Synthesis and Antifungal Activity of Some New Aroyl Hydrazones and 2,5-Disubstituted-1,3,4-oxadiazoles”, J. Heterocycl. Chem., Vol. 23, (1986), pp. 793–795. Search in Google Scholar

[8] H.M. El-Shaaer, M. Lácová, Ž. Odlerová and M. Furdík: “Synthesis and Antimycobacterial effect of 3-Formylchromone N-Aroyl-orN-Alkylcarbonylhydrazones”, Chem. Papers, Vol. 48, (1994), pp. 344–347. Search in Google Scholar

[9] M.R.L. Santos, E.J. Barreiro, R. Braz-Filho and A.L.P. Miranda: “Synthesis of New Isochromanylacetylarylhydrazones Designed as Probable Non-Addictive Analgesic Agents”, J. Braz. Chem. Soc., Vol. 8, (1997), pp. 471–478. http://dx.doi.org/10.1590/S0103-5053199700050000710.1590/S0103-50531997000500007Search in Google Scholar

[10] A. Krutošíková: “Bicyclic 5-5 Systems: Two Heteroatoms 1:1”, In: C.A. Ramsden (Ed.): Comprehensive Heterocyclic Chemistry II, Vol. 7, Pergamon, Oxford, 1996. pp. 1–47. Search in Google Scholar

[11] B.H. Lipshutz: “Five-membered heteroaromatic rings as intermediates in organic synthesis”, Chem. Rev., Vol. 86, (1986), pp. 795–819. http://dx.doi.org/10.1021/cr00075a00510.1021/cr00075a005Search in Google Scholar

[12] X.L. Hou, H.Y. Cheung, T.Y. Hon, P.L. Kwan, T.H. Lo, S.Y. Tong and H.N.C. Wong: “Regioselective syntheses of substituted furans”, Tetrahedron, Vol. 54, (1998), pp. 1955–2020. http://dx.doi.org/10.1016/S0040-4020(97)10303-910.1016/S0040-4020(97)10303-9Search in Google Scholar

[13] D.R. Shindhar, C.V.R. Sastry and N.K. Vaidya: “Synthesis and Antimicrobial Activity of Some New Arylsulfonylhydrazones Derived from 5-Substituted-2-furaldehydes and 3-(5-Nitro-2-furyl)acrolein”, J. Indian. Chem. Soc., Vol. 57, (1980), pp. 1118–1120; Chem. Abstr., Vol. 94, (1981), 174765j. Search in Google Scholar

[14] Y. Shigetaka, T. Akira, Y. Gang-Nan and H. Hsing-Chien: “Synthesis of 5-Nitrophenyl Furans and the Geometric Isomers of 5-(4-Nitrophenyl)-2-furylvinyl Benzenes”, Yakugaku Zasshi, Vol. 90, (1970), pp. 1150–1155; Chem. Abstr., Vol. 73, (1970), 120433x. Search in Google Scholar

[15] A. Krutošíková: “Synthesis and Reactions of Condensed Furan Derivatives”, Collect. Czech. Chem. Commun., Vol, 55, (1990), pp. 597–621. http://dx.doi.org/10.1135/cccc1990059710.1135/cccc19900597Search in Google Scholar

[16] A. Krutošíková, C.A. Ramsden, M. Dandárová and A. Lyčka: “Synthesis and Reactions of Furo [2,3-b]pyrroles”, Molecules, Vol. 2, (1997), pp. 69–79. Search in Google Scholar

[17] A. Krutošíková, M. Dandárová and V. Bobošík: “Derivatives of Furo[3,2-b]pyrrole”, Collect. Czech. Chem. Commun., Vol. 59, (1994), pp. 473–481. http://dx.doi.org/10.1135/cccc1994047310.1135/cccc19940473Search in Google Scholar

[18] M.K. Cyrański, T.M. Krygowski, A. Krutošíková and R. Sleziak: “Aromaticity of dihetero analogues of pentalene dianion. X-Ray and ab initio studies of eight methyl furo[3,2-b]pyrrole-5-carboxylate derivatives and five methyl furo[2,3-b]pyrrole-5-carboxylate derivatives”, Tetrahedron, Vol. 57, (2001), pp. 8867–8873. http://dx.doi.org/10.1016/S0040-4020(01)00854-710.1016/S0040-4020(01)00854-7Search in Google Scholar

[19] R. Gašparová and M. Lácová: “Study of Microwave Irradiation Effect on Condensation of 6-R-3-Formylchromones with Active Methylene Compounds”, Collect. Czech. Chem. Commun., Vol. 60, (1995), pp. 1178–1185. http://dx.doi.org/10.1135/cccc1995117810.1135/cccc19951178Search in Google Scholar

[20] M. Lácová, R. Gašparová, D. Loos, T. Liptay and N. Pronayová: “Effect of Microwave Irradiation on the Condensation of 6-Substituted 3-Formylchromones with Some Five-membered Heterocyclic Compounds”, Molecules, Vol. 5, (2000), pp. 167–178. Search in Google Scholar

[21] M. Lácová, H.M. El-Shaaer, D. Loos, M. Matulová, J. Chovancová and M. Furdík: “Evaluation of Effect of Microwave Irradiation on Syntheses and Reactions of Some New 3-Acyl-methylchromones”, Molecules, Vol. 3, (1998), pp. 120–131. Search in Google Scholar

[22] A. Loupy, A.Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault and D. Mathé: “New Solvent-Free Organic Synthesis Using Focused Microwaves”, Synthesis, (1998), pp. 1213–1234. Search in Google Scholar

[23] R. Frimm, J. Kováč and A. Krutošíková: “Furan derivatives XXXI α β-Unsaturated ketones of the phenylfuran series”, Chem. Zvesti, Vol. 27, (1973), pp. 101–106 and references cited. Search in Google Scholar

[24] D.A. Walker: “Preparation of Higher Plant Chloroplasts”, In: San Pietro (Ed.): Methods in Enzymology, Vol. 69, Part C. Academic Press, New York, 1980, pp. 94–104. Search in Google Scholar

[25] K. Král'ová, F. Šeršeň and M.J. Melník: “Inhibition of photosynthesis in Chlorela vulgaris by Cu(II) complexes with biologically active ligands”, Trace Microprobe Techniques, Vol. 16, (1998), pp. 491–500. Search in Google Scholar

[26] A.R. Wellburn: “The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution”, J. Plant. Physiol., Vol. 144, (1994), pp. 307–313. Search in Google Scholar

[27] Z. Puterová, H. Sterk and A. Krutošíková: “Reaction of Substituted Furan-2-carboxaldehydes and Furo[b]pyrrole Type Aldehydes with Hippuric Acid”, Molecules, Vol. 9, (2004), pp. 11–21. Search in Google Scholar

[28] A.O. Fitton, J.R. Frost, H. Suschitzky and P.G. Houghton: “Conversion of 3-Formylchromones into Pyrrole and Thiophene Derivatives”, Synthesis, (1977), pp. 133–135. Search in Google Scholar

[29] M.M. Kidwai, N.H. Khan and M. Ali: “A Novel Synthesis of 3-Substituted Pyruvic Acids. A New Route to α,β-Diaminoacids”, Synth. Commun., Vol. 9, (1979), pp. 363–376. Search in Google Scholar

[30] C. Cativiela, M.D. de Villegas, J. Mayoral, A. Avenoza and M.A. Roy: “On the Synthesis of 3(5)-Carbomethoxy-4-hetarylpyrazoles”, J. Heterocycl. Chem., Vol. 25, (1988), pp. 851–855. Search in Google Scholar

[31] K. Nálepa and G. Zedníková: “Synthesis of Some 1,2,4-Trisubstituted 2-Imidazolin-5-ones”, Acta Univ. Palacki. Olomouc., Fac. Rerum Natur., Chemica, Vol. 38, (1999), pp. 53–57 and references cited. Search in Google Scholar

[32] C.H. Chu, X.P., Hui, Y. Zhang, Z.Y. Zhang, Z.C. Li and R.A. Liao: “Synthesis and antifungal Activities of ω-[4-Aryl-5-(1-phenyl-5-methyl-1,2,3-triazol-4-yl)-1,2,4-triazol-3-thio]-ω-(1H-1,2,4-triazol-1-yl) acetophenones”, J. Chinese Chem. Soc., Vol. 48, (2001), pp. 121–125. Search in Google Scholar

[33] A. Moreno-Manas, Y. Arredondo, R. Pleixats, M. Teixido, M.M. Haga, C. Palacin, J.M. Castello and J.A. Oritiz: “New Triazole Antifungal Agents Derived from Mercaptomethylisoxazoles”, J. Heterocycl. Chem., Vol. 29, (1992), pp. 1557–1560. http://dx.doi.org/10.1002/jhet.557029063110.1002/jhet.5570290631Search in Google Scholar

[34] F.E. Norrington, R.M. Hyde, S.G. Williams and R. Wootton: “Physicochemical-Activity Relations in Practice. 1. Rational and Self-Consistent Data Bank”, J. Med. Chem., Vol. 18, (1975), pp. 604–607. http://dx.doi.org/10.1021/jm00240a01610.1021/jm00240a016Search in Google Scholar PubMed

[35] K. Král'ová, F. Šeršeň, L. Kubicová and K. Waisser: “Inhibitory Effect of Substituted Benzanilides on Photosynthetic Electron Transport in Spinach Chloroplasts”, Chem. Papers, Vol. 53, (1999), pp. 328–331. Search in Google Scholar

[36] M. Miletin, M. Doležal, V. Opletalová, J. Hartl, K. Král'ová and M. Macháček: “Some Anilides of 2-Alkylthio-and 2-Chloro-6-Alkylthio-4-Pyridinecarboxylic Acids: Synthesis and Photosynthesis-Inhibiting Activity”, Molecules, Vol. 6, (2001), pp. 603–613. http://dx.doi.org/10.3390/6070060310.3390/60700603Search in Google Scholar

[37] W. Draber, K. Tietjen, J.F. Kluth and A. Trebst: “Herbicides in Photosynthesis Research”, Angew. Chem. Int. Ed. Engl., Vol. 30, (1991), pp. 1621–1633. http://dx.doi.org/10.1002/anie.19911621110.1002/anie.199116211Search in Google Scholar

[38] C. Fedtke: Biochemistry and Physiology of Herbicide Action, Springer Verlag Berlin, Heidelberg, New York, 1982, pp. 26–28 and 36–37. 10.1007/978-3-642-68375-6Search in Google Scholar

[39] L. Kubicová, M. Šustr, K. Král'ová, V. Chobot, J. Vytlačilová, L. Jahodár, P. Vuorela, M. Macháček and J. Kaustová: “Synthesis and Biological Evaluation of Quinazoline-4-thiones”, Molecules, Vol. 8, (2003), pp. 756–769. Search in Google Scholar

[40] R. Conrad, C. Buchel, C. Wilhelm, W. Arsalane, C. Berkaloff and J.C. Duval: “Changes in Yield of In-Vivo Fluorescence of Chlorophyll a as a Tool for Selective Herbicide Monitoring”, J. Appl. Phycol., Vol 5, (1993), pp. 505–516. http://dx.doi.org/10.1007/BF0218250910.1007/BF02182509Search in Google Scholar

Published Online: 2005-12-1
Published in Print: 2005-12-1

© 2005 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/BF02475192/html
Scroll to top button