Jump to ContentJump to Main Navigation
Show Summary Details

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2015: 1.207
5-year IMPACT FACTOR: 1.272

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841
Impact per Publication (IPP) 2015: 1.164

Open Access
Online
ISSN
2391-5420
See all formats and pricing
Volume 3, Issue 4 (Dec 2005)

Issues

Inherent safety evaluation in process plants— a comparison of methodologies

Parisa Abedi
  • Department of Chemical Engineering and Environmental Science, (Chemical Engineering Design), Chalmers University of Technology, 412 96, Gothenburg, Sweden
  • Email:
/ Mohammad Shahriari
  • Department of Chemical Engineering and Environmental Science, (Chemical Engineering Design), Chalmers University of Technology, 412 96, Gothenburg, Sweden
  • Email:
Published Online: 2005-12-01 | DOI: https://doi.org/10.2478/BF02475203

Abstract

A global population increase and an improved standard of living are generally expected. To meet these demands, an increased production of chemicals will be necessary while protecting human health and the environment. However, most current methods of chemical production are unsustainable. New designs must result in plants that assure process and operator safety, the sustained health of workers and the community, and the protection of the environment. Traditional safety precautions and process controls minimize risk but cannot guarantee the prevention of accidents followed by serious consequences. Therefore, the general approach to environmental and safety problems must be changed from reactive to proactive. One way is to further develop the concept of inherent safety.

In this paper some methods for inherent safety evaluations are reviewed. The aim of the study is to analyze the different tools available for inherent safety evaluation and identify the most important criteria in determining the inherent safety of a process plant. A model is proposed to show the interactions of different factors on the inherent safety level of a process and the model is illustrated by a case study.

Keywords: Inherent safety; process plants; safety indices; criteria factors

  • [1] R.E. Bollinger, D.G. Clark, A.M. Dowell III, R.M. Ewbank, D.C. Hendershot, W.K. Lutz, S.I. Meszaros, D.E. Park and E.D. Wixom: Inherently Safer Chemical Processes —A Life Cycle Approach, Center for Chemical Process Safety of the American Institute of Chemical Engineers, New York, 1996.

  • [2] R.D. Turney: “Inherent Safety: What can be done to increase the use of the concept”, In: H. J. Pasman: Loss Prevention and Safety Promotion in the Process Industries —10th International Symposium, 2001, Stockholm (Sweden), Elsevier Science B.V., Amsterdam, 2001, pp. 519–528.

  • [3] R. Gowland: “Putting Numbers on Inherent Safety”, Chemical Engineering, Vol. 103(3), (1996), pp. 82–86.

  • [4] D.C. Hendershot: “Inherently Safer Chemical Process Design*1”, Journal of Loss Prevention in the Process Industries, Vol. 10(3), (1997), pp. 151–157. http://dx.doi.org/10.1016/S0950-4230(96)00055-1 [Crossref]

  • [5] D.C. Hendershot: “Conflicts and Decisions in the Search for Inherently Safer Process Options”, Process Safety Progress, Vol. 14(1), (1995), pp. 52–56. http://dx.doi.org/10.1002/prs.680140109 [Crossref]

  • [6] D.C. Hendershot: “Measuring Inherent Safety, Health and Environmental Characteristics Early in Process Development”, Process Safety Progress, Vol. 16(2), (1997), pp. 78–79. http://dx.doi.org/10.1002/prs.680160206 [Crossref]

  • [7] A.M. Heikkilä: Inherent Safety in Process Plant Design: An Index-Based Approach, Thesis (PhD), Helsinki University of Technology, 1999.

  • [8] Based Resource Document—Risk-Based Inspection, American Petroleum Institute (API), Publ 581, 2000.

  • [9] Dow Chemical Company: Dow's Fire & Explosion Index Hazard Classification Guide, 6th ed., American Institute of Chemical Engineers, New York, 1987.

  • [10] Dow Chemical Company: Dow's Chemical Exposure Index, American Institute of Chemical Engineers, New York, 1994.

  • [11] C.B. Etowa, P.R. Amyotte, M.J. Pegg and F.I. Khan: “Quantification of Inherent Safety Aspects of the Dow Indices”, Loss Prevention in the Process Industries, Vol. 15, 2002, pp. 477–487. http://dx.doi.org/10.1016/S0950-4230(02)00039-6 [Crossref]

  • [12] F.P. Lees: Loss Prevention in the Process Industries, 2nd ed., Butterworth-Heinemann, Oxford, 1996. [Web of Science]

  • [13] A.G. Rushton, D.W. Edwards and D. Lawrence: “Inherent Safety and Computer Aided Process Design”, Process Safety and Environmental Protection, Vol. 72 (B), (1994), pp. 83–87.

  • [14] D.W. Edwards and D. Lawrence: “Assessing the Inherent Safety of Chemical Process Routes: Is There a Relation between Plant Costs and Inherent Safety?”, Process Safety and Environmental Protection, Vol. 71 (B), (1993), pp. 252–258.

  • [15] D.W. Edwards, A.G. Rushton and D. Lawrence: “Quantifying the Inherent Safety of Chemical Process Routes”, In: The 5th World Congress of Chemical Engineering, San Diego (USA), 1996, AIChE, New York, 1996, pp. 1113–1118.

  • [16] M. Gentile, W.J. Rogers and M.S. Mannan: “Development of an Inherent Safety Index Based on Fuzzy Logic”, AIChE Journal, Vol. 49(4), (2003), pp. 959–968. http://dx.doi.org/10.1002/aic.690490413 [Crossref]

  • [17] D. Mansfield, J. Clark, Y. Malmén, J. Schabel, R. Rogers, E. Suokas, R. Turney, G. Ellis, J. van Steen and M. Verwoerd: The INSET Toolkit, AEA Technology, Eutech Engineering Solutions, INBUREX, Kemira Agro, TNO, VTT Manufacturing Technology, 2001, http://www.aeat-safety-and-risk.com/Downloads/INSET%20Toolkit%20_v1_01_complete_feb02.pdf

  • [18] G. Koller, U. Fischer and K. Hungerbuler: “Assessing Safety, Health, and Environmental Impact Early During Process Development”, Ind. Eng. Chem. Res., Vol. 39, (2000), pp. 960–972. http://dx.doi.org/10.1021/ie990669i [Crossref]

  • [19] F.I. Khan and P.R. Amyotte: “Integrated Inherent Safety Index (I2SI): a Tool for Inherent Safety Evaluation”, Process Safety Progress, Vol. 23(2), (2004), pp. 136–148. http://dx.doi.org/10.1002/prs.10015 [Crossref]

  • [20] F.I. Khan, T. Husain and S.A. Abbasi: “Safety Weighted Hazard Index (SWeHI): A New User-Friendly Tool for Swift Yet Comperhensive Hazard Identification and Safety Evaluation in Chemical Process Industries”, Process Safety and Environmental Protection, Vol. 79, (2001), pp. 65–80. http://dx.doi.org/10.1205/09575820151095157 [Crossref]

  • [21] F.I. Khan, R. Sadiq and B. Veitch: “Life Cycle Index (LInX): A New Indexing Procedure for Process and Product Design and Decision-Making”, Journal of Cleaner Production, Vol. 12, (2004), pp. 59–76. http://dx.doi.org/10.1016/S0959-6526(02)00194-4 [Crossref]

  • [22] R. King: Safety in the Process Industrics, Butterworth-Heinemann, London, 1990.

  • [23] G.L. Wells: Safety in Process Plant Design, Godwin, London 1980.

  • [24] J.L. Koolen: Design of Simple and Robust Process Plants, Wiley-VCH, Weinheim, 2001.

  • [25] G.B. Scuricini: “Complexity in Large Technological Systems”, In: I. Peliti and A. Vulpiani: Measures of Complexity, 1987, Rome, Spriger-Verlag, Berlin, New York, pp. 83–101.

  • [26] T.A. Kletz: Plant Design for Safety, The Institution of Chemical Engineers, Warwickshire, England, 1991.

  • [27] T.A. Kletz: Cheaper, Safer Plants, or Wealth and Safety at Work, The Institution of Chemical Engineers, Rugby, Warwickshire, England, 1984.

About the article

Published Online: 2005-12-01

Published in Print: 2005-12-01


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/BF02475203. Export Citation

© 2005 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hans J. Pasman, William J. Rogers, and M. Sam Mannan
Journal of Loss Prevention in the Process Industries, 2012, Volume 25, Number 5, Page 870
[2]
Rajagopalan Srinivasan and Sathish Natarajan
Process Safety and Environmental Protection, 2012, Volume 90, Number 5, Page 389
[3]
Mimi H. Hassim and Markku Hurme
Journal of Loss Prevention in the Process Industries, 2010, Volume 23, Number 2, Page 260

Comments (0)

Please log in or register to comment.
Log in