Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
See all formats and pricing
More options …
Volume 4, Issue 2


Volume 13 (2015)

Holographic grating recording in azobenzene functionalized polymers

Anna Sobolewska / Andrzej Miniewicz / Eugenia Grabiec / Danuta Sek
Published Online: 2006-06-01 | DOI: https://doi.org/10.2478/s11532-006-0003-7


A group of 22 polymers have been synthesized to test their suitability for recording holographic gratings. Polyamides, polyimides, polyesters and their combinations were functionalized with pendant azobenzene groups containing single or double N=N. The polymers were studied using a standard degenerate two-wave mixing technique, which enables measurement of light-induced periodic modification of polymer refractive index and absorption coefficient by analysis of the diffracted light. Two qualitatively different configurations of the holographic polarization recording were used, s-s and s-p. The relationship between structural properties of polymer matrix and azobenzene groups and the holographic grating recording kinetics and light diffraction efficiency was investigated.

Keywords: Azobenzene functionalized polymers; azo-polymers; refractive index; light scattering; holographic grating recording; polarization recording

  • [1] Y. Kawata and S. Kawata: “3D data storage and near-field recording”, In: Z. Sekkat and W. Knoll (Eds.): Photoreactive Organic Thin Films, Academic Press, San Diego, 2002, pp. 513–539. Google Scholar

  • [2] R. Hagen and T. Bieringer: “Photoaddressable Polymers for Optical Data Storage”, Adv. Mater., Vol. 13, (2001), pp. 1805–1810. http://dx.doi.org/10.1002/1521-4095(200112)13:23<1805::AID-ADMA1805>3.0.CO;2-VCrossrefGoogle Scholar

  • [3] S. Kawata and Y. Kawata: “Three-Dimensional Optical Data Storage Using Photochromic Materials”, Chem. Rev., Vol. 100, (2000), pp. 1777–1788. http://dx.doi.org/10.1021/cr980073pCrossrefGoogle Scholar

  • [4] A. Natansohn and P. Rochon: “Photoinduced motions in azobenzene-based polymers”, In: Z. Sekkat and W. Knoll (Eds.): Photoreactive Organic Thin Films, Academic Press, San Diego, 2002, pp. 399–427. Google Scholar

  • [5] K. Munakata, K. Harada, M. Itoh, S. Umegaki and T. Yatagai: “A new holographic recording material and its diffraction efficiency increase effect: the use of photoinduced surface deformation in azo-polymer film”, Opt. Commun., Vol. 191, (2001), pp. 15–19. http://dx.doi.org/10.1016/S0030-4018(01)01078-1CrossrefGoogle Scholar

  • [6] A. Nathanson and P. Rochon: “Photoinduced motions in azobenzene-based amorphous polymers. Possible photonic devices”, Adv. Mater., Vol. 11, (1999), pp. 1387–1391. Google Scholar

  • [7] J.A. Delaire and K. Nakatani: “Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials”, Chem. Rev., Vol. 100, (2000), pp. 1817–1845. http://dx.doi.org/10.1021/cr980078mCrossrefGoogle Scholar

  • [8] P.-A. Blanche, Ph.C. Lemaire, C. Maertens, P. Dubois and R. Jérôme: “Polarization holography reveals the nature of the grating in polymers containing azo-dye”, Opt. Commun., Vol. 185, (2000), pp. 1–12. http://dx.doi.org/10.1016/S0030-4018(00)00975-5CrossrefGoogle Scholar

  • [9] Z. Sekkat: “Photo-orientation by photoisomerization”, In: Z. Sekkat and W. Knoll (Eds.): Photoreactive Organic Thin Films, Academic Press, San Diego, 2002, pp. 63–104. Google Scholar

  • [10] M. Fischer, A. El Osman, P.-A. Blanche and M. Dumont: “Photoinduced dichroism as a tool for understanding orientational mobility of photisomerizable dyes in amorphous matrices”, Synth. Metals, Vol. 115, (2000), pp. 139–144. Google Scholar

  • [11] M. Dumont, Z. Sekkat, P. Loucif-Saibi, K. Nakatani and J. Delaire: “Photoisomerization, photoinduced orientation and orientational relaxation of azo dyes in polymeric films”, Nonlinear Opt., Vol. 5, (1993), pp. 395–398. Google Scholar

  • [12] T. Huang and K.H. Wagner: “Diffraction analysis of photoanisotropic holography: an anisotropic saturation model”, J. Opt. Soc. Am. B, Vol. 13, (1996), pp. 282–299. CrossrefGoogle Scholar

  • [13] T. Huang and K.H. Wagner: “Holographic diffraction in photoanisotropic organic materials”, J. Opt. Soc. Am. A, Vol. 10, (1993) pp. 306–315. CrossrefGoogle Scholar

  • [14] O.N. Oliveira, L. Li, J. Kumar and S. Tripathy: “Surface-relief gratings on azobenzene-containing films”, In: Z. Sekkat and W. Knoll (Eds.): Photoreactive Organic Thin Films, Academic Press, San Diego, 2002, pp. 429–486. Google Scholar

  • [15] S.K. Tripathy, N.K. Viswanathan, S. Balasubramanian, S. Bian, L. Li and J. Kumar: “Polarization dependent holographic write, read and erasure of surface relief gratings on azopolymer films”, In: F. Kajzar and M.V. Agranovich (Eds.): Multiphoton and Light Driven Multielectron Processes in Organic: New Phenomena, Materials and Application, NATO Science Series, 2000, pp. 421–436. Google Scholar

  • [16] A. Natansohn and P. Rochon: “Photoinduced Motions in Azo-Contaning Polymers”, Chem. Rev., Vol. 102, (2002), pp. 4139–4175. http://dx.doi.org/10.1021/cr970155yCrossrefGoogle Scholar

  • [17] N.K. Viswanathan, D.Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar and S.K. Tripathy: “Surface relief structures on azo polymer films”, J. Mater. Chem., Vol. 9, (1999), pp. 1941–1955. http://dx.doi.org/10.1039/a902424gCrossrefGoogle Scholar

  • [18] I. Naydenova, L. Nikolova, T. Todorov, N.C.R. Holme, P.S. Ramanujam and S. Hvilsted: “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters”, J. Opt. Soc. Am. B, Vol. 15, (1998), pp. 1257–1265. CrossrefGoogle Scholar

  • [19] S.K. Tripathy, D.-Y. Kim, L. Li and J. Kumar: “Photofabrication of surfaces for holograms”, Chem. Technol., Vol. 34, (1998), pp. 34–39. Google Scholar

  • [20] K.G. Yager and Ch.J. Barrett: “All-optical patterning of azo polymer films”, Curr. Opin. Solid St. M., Vol. 5, (2001), pp. 487–494. Google Scholar

  • [21] P. Lefin, C. Fiorini and J. Nunzi: “Anisotropy of the photoinduced translation diffusion of azo-dyes”, Opt. Mater., Vol. 9, (1998), pp. 323–328. http://dx.doi.org/10.1016/S0925-3467(97)00100-6CrossrefGoogle Scholar

  • [22] P. Lefin, C. Fiorini and J. Nunzi: “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices”, Pure Appl. Opt., Vol. 7, (1998), pp. 71–82. http://dx.doi.org/10.1088/0963-9659/7/1/011CrossrefGoogle Scholar

  • [23] C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond and J.-M. Nunzi: “Molecular migration mechsanism for laser induced surface relief grating formation”, Synth. Metals, Vol. 115, (2000), pp. 121–125. Google Scholar

  • [24] C. Barrett, A. Natansohn and P. Rochon: “Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films”, Phys. Chem., Vol. 100, (1996), pp. 8836–8842. CrossrefGoogle Scholar

  • [25] C. Barrett, A. Natansohn and P. Rochon: “Model of laser-driven mass transport in thin films of dye-functionalized polymers”, J. Chem. Phys., Vol. 109, (1998), pp. 1505–1516. http://dx.doi.org/10.1063/1.476701CrossrefGoogle Scholar

  • [26] T. Pedersen, P. Johansen, N. Holme, P. Ramanujam and S. Hvilsted: “Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers”, Phys. Rev. Lett., Vol. 80, (1998), pp. 89–91. http://dx.doi.org/10.1103/PhysRevLett.80.89CrossrefGoogle Scholar

  • [27] O. Baldus and S. Zilker: “Surface relief gratings in photoaddressable polymers generated by continuous wave holography”, Appl. Phys. B, Vol. 72, (2001), pp. 425–427. CrossrefGoogle Scholar

  • [28] J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee and S. Tripathy: “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers”, Appl. Phys. Lett., Vol. 72, (1998), pp. 2096–2098. CrossrefGoogle Scholar

  • [29] D. Sek, E. Grabiec, A. Sobolewska and A. Miniewicz: “Influence of new poly(amide-imide)s on their optical properties”, e-Polymer, Vol. 071, (2004), pp. 1–10. Google Scholar

  • [30] D. Sek, E. Grabiec and A. Miniewicz: “Investigation of Polymers with Chromophore Units I. Synthesis and Properties of New Poly(ester-imide)s from 2,4-dihydroxy-4′-nitroazobenzene”, Polym. J. Vol. 35, (2003), pp. 749–756. http://dx.doi.org/10.1295/polymj.35.749CrossrefGoogle Scholar

  • [31] D. Sek, E. Grabiec, A. Miniewicz and A. Sobolewska: “Influence of poly(amide-imide)s structures on holographic grating recording”, Proc. SPIE, Vol. 5724, (2005), pp. 311–321. Google Scholar

  • [32] E. Grabiec, E. Shcab-Balcerzak, D. Sek, A. Sobolewska and A. Miniewicz: “New polyamides with azo-chromophore groups”, Thin Solid Films, Vol. 453–454, (2004), pp. 367–371. Google Scholar

  • [33] E. Schab-Balcerzak, E. Grabiec, D. Sek and A. Miniewicz: “New Azobenzene chromophore as Monomers for Synthesis of Polyesters”, Polym. J., Vol. 11, (2003), pp. 851–859. CrossrefGoogle Scholar

  • [34] H.J. Eichler, P. Gunter and D.W. Pohl: Laser-Induced Dynamic Gratings, Springer-Verlag, Berlin, 1986. Google Scholar

  • [35] Z. Sekkat, J. Wood, Y. Geerta and W. Knoll: “Reorientation mechanism of azobenzenes within the trans-cis photoisomerization”, J. Phys. Chem., Vol. 99, (1995), pp. 17226–17230. http://dx.doi.org/10.1021/j100047a029CrossrefGoogle Scholar

  • [36] M. Dumont and A. El Osman: “On spontaneous and photoinduced orientational mobility of dye molecules in polymers”, Chem. Phys., Vol. 245, (1999), pp. 437–462. http://dx.doi.org/10.1016/S0301-0104(99)00096-8CrossrefGoogle Scholar

  • [37] O. Ostroverkhova and W.E. Moerner: “Organic Photorefractives: Mechanisms, Materials, and Applications, Chem. Rev., Vol. 104, (2004), pp. 3267–3314. http://dx.doi.org/10.1021/cr960055cCrossrefGoogle Scholar

  • [38] M.S. Ho, A. Natansohn and P. Rochon: “Azo Polymers for Reversible Optical Storage. 7. The Effect of the Size of the Photochromic Groups”, Macromol., Vol. 28, (1995), pp. 6124–6127. CrossrefGoogle Scholar

  • [39] G. Pawlik, A.C. Mitus, A. Miniewicz and F. Kajzar: “Kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: Experiments and Monte Carlo simulations”, J. Chem. Phys., Vol. 119(13), (2003), pp. 6789–6801. http://dx.doi.org/10.1063/1.1603736CrossrefGoogle Scholar

  • [40] O.V. Yaroshchuk, M. Dumont, Y.A. Zakrevskyy, T.V. Bidna and J. Lindau: “Molecular structure of azopolymers and photoinduced 3D orientational order. 1. Azobenzene polyesters”, J. Phys. Chem., Vol. 108, (2004), pp. 4647–4658. Google Scholar

  • [41] T. Buffeteau, F. Lagugne Labarthet, M. Pezolet and C. Sourisseau: “Dynamics of Photoinduced Orientation of Nonpolar Azobenzene Groups in Polymer Films. Characterization of the Cis Isomers by Visible and FTIR Spectroscopies”, Macromol., Vol. 34, (2001), pp. 7514–7521. http://dx.doi.org/10.1021/ma010279jCrossrefGoogle Scholar

  • [42] H. Ono, N. Kowatari and N. Kawatsuki: “Holographic grating generation in thick polymer films containing azo dye molecules”, Opt. Mater., Vol. 17, (2001), pp. 387–394. http://dx.doi.org/10.1016/S0925-3467(01)00066-0CrossrefGoogle Scholar

  • [43] G. Cipparrone, A. Mazzulla, S.P. Palto, S.G. Yudin and L.M. Blinov: “Permanent polarization gratings in photosensitive Langmuir-Blodgett films”, Appl. Phys. Lett., Vol. 77, (2000), pp. 2106–2108. http://dx.doi.org/10.1063/1.1308056CrossrefGoogle Scholar

  • [44] K. Sutter and P. Gunter: “Photorefractive gratings in the organic crystal 2-octyloctyloamine-5nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane”, J. Opt. Soc. Am. B, Vol. 7, (1990), pp. 2274–2279. Google Scholar

  • [45] C.H. Kwak and S.J. Lee: “Approximate analytic solution of photochromic and photorefractive gratings in photorefractive materials”, Opt. Commun., Vol. 183, (2000), pp. 547–554. http://dx.doi.org/10.1016/S0030-4018(00)00902-0CrossrefGoogle Scholar

  • [46] L. Frey, J.M. Jonathan, A. Villing and G. Roosen: “Kinetics of photoinduced grating be a moving grating technique”, Opt. Commun., Vol. 165, (1999), pp. 153–161. http://dx.doi.org/10.1016/S0030-4018(99)00221-7CrossrefGoogle Scholar

  • [47] F. Lagugne Labarthet, T. Buffeteau and C. Sourisseau: “Time dependent analysis of the formation of a half-period surface relief grating on amorphous azopolymer films”, J. Appl. Phys., Vol. 90(7), (2001), pp. 3149–3158. Google Scholar

  • [48] F. Lagugne Labarthet, P. Rochon and A. Natansohn: “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer”, Appl. Phys. Lett., Vol. 75(10), (1999), pp. 1377–1379. Google Scholar

About the article

Published Online: 2006-06-01

Published in Print: 2006-06-01

Citation Information: Open Chemistry, Volume 4, Issue 2, Pages 266–284, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-006-0003-7.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Damien Dattler, Gad Fuks, Joakim Heiser, Emilie Moulin, Alexis Perrot, Xuyang Yao, and Nicolas Giuseppone
Chemical Reviews, 2019
Dejan Bošnjaković, Marko Gregorc, Hui Li, Martin Čopič, Valentina Domenici, and Irena Drevenšek-Olenik
Applied Sciences, 2018, Volume 8, Number 8, Page 1330
Irina Savchenko, Nikolaj Davidenko, Irina Davidenko, and Sergej Studzinsky
Molecular Crystals and Liquid Crystals, 2014, Volume 590, Number 1, Page 43
Ioana Moleavin, Constanta Ibanescu, Anca Hodorog-Rusu, Ecaterina Peptu, Florica Doroftei, and Nicolae Hurduc
Open Chemistry, 2011, Volume 9, Number 6

Comments (0)

Please log in or register to comment.
Log in