Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 4, Issue 4

Issues

Volume 13 (2015)

Thermal decomposition of ammonia. N2H4-an intermediate reaction product

Daniela Dirtu
  • Department of Physical Chemistry, Faculty of Chemistry, The “Al. I. Cuza” University of Iassy, 700506, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucia Odochian
  • Department of Physical Chemistry, Faculty of Chemistry, The “Al. I. Cuza” University of Iassy, 700506, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurel Pui
  • Department of Physical Chemistry, Faculty of Chemistry, The “Al. I. Cuza” University of Iassy, 700506, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ionel Humelnicu
  • Department of Physical Chemistry, Faculty of Chemistry, The “Al. I. Cuza” University of Iassy, 700506, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-12-01 | DOI: https://doi.org/10.2478/s11532-006-0030-4

Abstract

The paper reports the thermal decomposition of ammonia under dynamic conditions at 800°C in a quartz reactor. Its purpose is to confirm the homogeneous-heterogeneous degenerated branched chain mechanism established in previous studies, which assume the formation of N2H4 as a molecular intermediate; this paper identifies hydrazine as a product of thermal decomposition using FT-IR and UV-VIS spectroscopies.

Keywords: Ammonia decomposition; mechanism reduction; hydrazine; spectroscopy FT-IR; spectroscopy UV-VIS

  • [1] C.N. Hinshelwood and R.E. Burk: “The thermal decomposition of ammonia upon various surfaces”, J. Chem. Soc., Vol. 127, (1925), pp. 1105–1117. Google Scholar

  • [2] D.A. Cooper and E.B. Ljungstrom: “Decomposition of NH3 over Quartz Sand at 840–960°C”, Energy & Fuels, Vol. 2, (1988), pp. 716–719. http://dx.doi.org/10.1021/ef00011a019CrossrefGoogle Scholar

  • [3] J.C. Ganley, F.S. Thomas, E.G. Seebauer and R.I. Masel: “A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia”, Catal. Lett., Vol. 96, (2004), pp. 117–122. http://dx.doi.org/10.1023/B:CATL.0000030108.50691.d4CrossrefGoogle Scholar

  • [4] W. Arabczyk and U. Narkiewicz: “A new method for in situ determination of number of active sites in iron catalysts for ammonia synthesis and decomposition”, Appl. Catal., Vol. 196, (2002), pp. 423–426. Google Scholar

  • [5] K.F. Bonhoeffer and L. Farkas: “The interpretation of diffuse molecular spectra. Experiments on the photochemical decomposition of ammonia”, Z. Physik. Chem., Vol. 134, (1928), pp. 337–342. Google Scholar

  • [6] A. Giquel, P. Saillard and N. Laidoni: “Mechanism of catalytic decomposition in an NH3 low pressure plasma”, Rev. Phys. Appl., Vol. 24, (1989), pp. 285–294 Google Scholar

  • [7] L. Odochian, L. Dragomir and M. Dumitras: “Thermal decomposition of ammonia. I. Kinetic study under dynamic condition”, Anal. St. Univ. Iasi, S. Ch., Vol. VIII(1), (2000), pp. 15–20. Google Scholar

  • [8] L. Odochian, M Dumitras and D. Dirtu: “Contributii la mecanismul reactiei de descompunere termica a amoniacului II”, Rev. Chim. (Bucuresti), Vol. 56(5), (2005), pp. 485–489. Google Scholar

  • [9] R. Sochet: La cinétique des réactions en chaînes, Dunod, Paris, 1971, pp. 56–59. Google Scholar

  • [10] T. Turanyi, T. Berces and S. Vajda: “Reaction-rate analysis of complex kinetic systems”, Int. J. Chem. Kinet., Vol. 20, (1989), pp. 83–99. http://dx.doi.org/10.1002/kin.550210203CrossrefGoogle Scholar

  • [11] J. Ianni: KINTECUS, Windows Version 3.1, www.kintecus.com, 2003 Google Scholar

  • [12] P. Pascal: Nouveau traité de chimie minerale, Vol. 10, Masson, Paris, 1956, pp. 406–408. Google Scholar

  • [13] The National Institute for Occupational Safety and Health (NIOSH): Manual of Analytical Methods, 4th ed., Method number 3503, US Government Printing Office, Washington DC, 1994. Google Scholar

  • [14] Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed., Vol. 1, W.H. Press, Cambridge Univ. Press, 1997, pp. 406–412. Google Scholar

  • [15] J.R. During, S.F. Bush and E.E. Mercer: “Vibrational spectrum of hydrazine and a Raman study of hydrogen bonding in hydrazine”, The J. Chem. Physics”, Vol. 44(11), (1966), pp. 4238–4247. http://dx.doi.org/10.1063/1.1726612CrossrefGoogle Scholar

  • [16] Z. Mielke and H. Ratajczak: “Normal coordinate analysis of diimide hydrazine and its protonated species”, J. Mol. Struc, Vol. 19, (1973), pp. 751–759. http://dx.doi.org/10.1016/0022-2860(73)85152-XCrossrefGoogle Scholar

  • [17] A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati: “The nitrogen — nitrogen stretching band in hydrazine derivatives and complexes”, Inorg. Chem., Vol. 7, (1968), pp. 1430–1433. http://dx.doi.org/10.1021/ic50065a034CrossrefGoogle Scholar

  • [18] A. Afkhami and A.R. Zarei: “Simultaneous spectrophotometric determination of hydrazine and phenylhydrazine based on their condensation reactions with different aromatic aldehydes in micellar media using H-point standard addition method”, Talanta, Vol. 62, (2004), pp. 559–565. http://dx.doi.org/10.1016/j.talanta.2003.08.023CrossrefGoogle Scholar

  • [19] L. Odochian and M. Dumitras: Teoria cineticã si mecanismul reactiilor în lant I. Reactii în lant simplu, Matrix Rom, Bucharest, 2003, pp. 23–25. Google Scholar

About the article

Published Online: 2006-12-01

Published in Print: 2006-12-01


Citation Information: Open Chemistry, Volume 4, Issue 4, Pages 666–673, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-006-0030-4.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pawan Kumar, Ehsan Vahidzadeh, Ujwal K. Thakur, Piyush Kar, Kazi M. Alam, Ankur Goswami, Najia Mahdi, Kai Cui, Guy M. Bernard, Vladimir K. Michaelis, and Karthik Shankar
Journal of the American Chemical Society, 2019, Volume 141, Number 13, Page 5415
[2]
Elena Vyazmina, Jie Sheng, Simon Jallais, Lucas Bustamante-Valencia, Pierre Bruchet, Frederic P. Richard, Fabienne Delaunois, Véronique Vitry, and Francine Roudet
Matériaux & Techniques, 2018, Volume 106, Number 1, Page 103
[3]
Pornthip Tongying, Ying-Gang Lu, Leah M. G. Hall, Kyureon Lee, Marta Sulima, Jim Ciston, and Gordana Dukovic
ACS Nano, 2017, Volume 11, Number 8, Page 8401
[4]
Clothilde A. Eveleens, Yuh Hijikata, Stephan Irle, and Alister J. Page
The Journal of Physical Chemistry C, 2016, Volume 120, Number 35, Page 19862
[5]
David Jishiashvili, Lasha Kiria, Zeinab Shiolashvili, Nino Makhatadze, Elguja Miminoshvili, and Alexander Jishiashvili
Journal of Nanoscience, 2013, Volume 2013, Page 1
[6]
Evelyn Cuevas Creencia, Takaaki Horaguchi, and Atsushi Takahashi
HETEROCYCLES, 2009, Volume 78, Number 6, Page 1549
[7]
Madeleine Diskus, Murugan Balasundaram, Ola Nilsen, and Helmer Fjellvåg
Dalton Transactions, 2012, Volume 41, Number 8, Page 2439
[8]
Vipin Verma, Poonam Verma, Pratima Ray, and Alok R. Ray
Materials Science and Engineering: C, 2008, Volume 28, Number 8, Page 1441
[9]
T. Otremba, N. Frenzel, M. Lerch, T. Ressler, and R. Schomäcker
Applied Catalysis A: General, 2011, Volume 392, Number 1-2, Page 103
[10]
Beatriz H. Cardelino and Carlos A. Cardelino
The Journal of Physical Chemistry C, 2011, Volume 115, Number 18, Page 9090
[11]
Jeong Hwan Kim, Tae Joo Park, Moonju Cho, Jae Hyuck Jang, Minha Seo, Kwang Duk Na, Cheol Seong Hwang, and Jeong Yeon Won
Journal of The Electrochemical Society, 2009, Volume 156, Number 5, Page G48

Comments (0)

Please log in or register to comment.
Log in