Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2007

DFT and neutron diffraction study of 1,6-anhydro-β-D-glucopyranose (levoglucosan)

  • Mariana Sládkovic̆ová EMAIL logo , Pavel Mach , L’ubomír Smrc̆ok and Håkan Rundlöf
From the journal Open Chemistry

Abstract

Geometries of 27 generated conformers of levoglucosan were optimized in vacuo at DFT level of theory combining several functionals with high quality basis sets. For the sake of comparison a reference molecular and crystal geometry obtained from 30 K single crystal neutron diffraction data was used. Analysis of the conformers’ geometries revealed that in all stable conformers intramolecular two-or three centre hydrogen bonds were formed. Relative energy of the conformer, which approximated the molecule in the crystal structure the most, was only ∼3 kcal/mol higher, than the energy of the most stable conformer in vacuo. The largest discrepancies between the geometries calculated in vacuo and experimental geometry concentrated in the vicinity of anomeric C1. These differences were reduced by involving O1 to intermolecular hydrogen bond using a simple model of the respective hydrogen bond in the crystal.

[1] R.B. Ward, R.L. Whistler, M. L. Wolfrom and J.M. BeMiller (Eds.): Methods in Carbohydrate Chemistry, Academic Press, New York, 1963, pp. 394–396. Search in Google Scholar

[2] M. Gander, K.M. Rapp and H. Schiweck: Process for preparing 1,6-beta-D-anhydroglucopyranose (levoglucosan) in high purity, US Pat., 5 023 330, 1991. Search in Google Scholar

[3] M. Cerny and J. Stanek: “1,6-Anhydro derivatives of aldohexoses”, Adv. Carbohydr. Chem. Biochem., Vol. 34, (1977), pp. 23–177. http://dx.doi.org/10.1016/S0065-2318(08)60324-810.1016/S0065-2318(08)60324-8Search in Google Scholar

[4] J.S. Carvalho, W. Prins and C. Schuerch: “Addition polymerization of anhydrosugar derivatives. I. A Polyanhydroglucose”, J. Amer. Chem. Soc., Vol. 81, (1959), pp. 4054–4058. http://dx.doi.org/10.1021/ja01524a06010.1021/ja01524a060Search in Google Scholar

[5] C.D. Simpson, R.L. Dills, B.S. Katz and D.A. Kalman: “Determination of levoglucosan in atmospheric fine particulate”, J. Air & Waste Management Association, Vol. 54, (2004), pp. 689–694. Search in Google Scholar

[6] G. Scholnik, A.H. Falkovich, Y. Rudich, W. Maenhaut and P. Artaxo: “New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples”, Environ. Sci. Technol., Vol. 29, (2005), pp. 2744–2752. http://dx.doi.org/10.1021/es048363c10.1021/es048363cSearch in Google Scholar

[7] Y.J. Park, H.S. Kim and G.A. Jeffrey: “The crystal structure of 1,6-Anhydro-β-D-glucopyranose”, Acta Cryst. B, Vol. 27, (1971), pp. 220–227. http://dx.doi.org/10.1107/S056774087100193610.1107/S0567740871001936Search in Google Scholar

[8] C. Ceccarelli, G.A. Jeffrey and R. Taylor: “A survey of O-H...O hydrogen bond geometries determined by neutron diffraction”, J. Molecular Struct., Vol. 70, (1981), pp. 255–271. http://dx.doi.org/10.1016/0022-2860(81)80112-310.1016/0022-2860(81)80112-3Search in Google Scholar

[9] G.A. Jeffrey and J. Mitra: “The hydrogen-bondong patterns in the pyranose and pyranoside crystal structures”, Acta Cryst. B, Vol. 39, (1983), pp. 469–480. http://dx.doi.org/10.1107/S010876818300274810.1107/S0108768183002748Search in Google Scholar

[10] T. Steiner and W. Saenger: “Geometry of C-H...O hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data” J. Am. Chem. Soc., Vol. 114, (1992), pp. 10146–10154. http://dx.doi.org/10.1021/ja00052a00910.1021/ja00052a009Search in Google Scholar

[11] G.I. Csonka, K. Elias and I.G. Csizmadia: “Ab initio and density functional study of the conformational space of 1C4α-L-fucose”, J. Comput. Chem., Vol. 18, (1997), pp. 330–342. http://dx.doi.org/10.1002/(SICI)1096-987X(199702)18:3<330::AID-JCC4>3.0.CO;2-V10.1002/(SICI)1096-987X(199702)18:3<330::AID-JCC4>3.0.CO;2-VSearch in Google Scholar

[12] A.G. Evdokimov, A.J. Kalb, T.F. Koetzle, W.T. Klooster and J.M.L. Martin: “Structures of furanosides: density functional calculations and high-resolution x-ray and neutron diffraction crystal structures”, J. Phys. Chem. A, Vol. 103 (1999), pp. 744–753. http://dx.doi.org/10.1021/jp983784010.1021/jp9837840Search in Google Scholar

[13] A.G. Evdokimov, J.M.L. Martin and A.J. Kalb: “Structures of furanosides: A study of the conformational space of methyl a-D-lyxofuranoside by density functional methods”, J. Phys. Chem. A, Vol. 104, (2000), pp. 5291–5297. http://dx.doi.org/10.1021/jp993161210.1021/jp9931612Search in Google Scholar

[14] J.R. Kneisler and N.L. Allinger: “Ab initio and density functional theory study of structures and energies for dimethoxymethane as a model for the anomeric effect”, J. Comput. Chem., Vol. 17, (1996), pp. 757–766. http://dx.doi.org/10.1002/(SICI)1096-987X(199605)17:7<757::AID-JCC1>3.0.CO;2-R10.1002/(SICI)1096-987X(199605)17:7<757::AID-JCC1>3.0.CO;2-RSearch in Google Scholar

[15] G.I. Csonka, K. Elias, I. Kolossvary, C.P. Sosa and I.G. Csizmadia: “Theoretical study of alternative ring forms of α-L-fucopyranose”, J. Phys. Chem. A, Vol. 102, (1998), pp. 1219–1229. http://dx.doi.org/10.1021/jp973320m10.1021/jp973320mSearch in Google Scholar

[16] A.D.J. Becke: “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[17] S.E. Barrows, F.J. Dulles, C.J. Cramer, A.D. French, and D.G. Truhlar: “Relative stability of alternative chair forms and hydroxymethyl conformations of β-D-glucopyranose”, Carbohyd. Res., Vol. 276, (1995), pp. 219–251. http://dx.doi.org/10.1016/0008-6215(95)00175-S10.1016/0008-6215(95)00175-SSearch in Google Scholar

[18] R. Ditchfield, W.J. Hehre and J.A. Pople: “Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules”, J. Chem. Phys., Vol. 54, (1971), pp. 724–728. http://dx.doi.org/10.1063/1.167490210.1063/1.1674902Search in Google Scholar

[19] T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.v.R. Schleyer: “Efficient diffuse function-augmented basis sets for anion calculations”, J. Comp. Chem., Vol. 4, (1983), pp. 294–301. http://dx.doi.org/10.1002/jcc.54004030310.1002/jcc.540040303Search in Google Scholar

[20] G.J. Csonka, K. Elias and I.G. Csizmadia: “Relative stability of 1C4 and 4C1 chair forms of β-D-glucose: a density functional study”, Chem. Phys. Lett., Vol. 257, (1996), pp. 49–60. http://dx.doi.org/10.1016/0009-2614(96)00508-810.1016/0009-2614(96)00508-8Search in Google Scholar

[21] D.E. Woon and T.H. Dunning Jr.: “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon”, J. Chem. Phys., Vol. 98 (1993), pp. 1358–1371. http://dx.doi.org/10.1063/1.46430310.1063/1.464303Search in Google Scholar

[22] E.R. Davidson: “Comment on’ Comment on Dunning’ss correlation-consistent basis sets’”, Chem. Phys. Lett., Vol. 260, (1996), pp. 514–518. http://dx.doi.org/10.1016/0009-2614(96)00917-710.1016/0009-2614(96)00917-7Search in Google Scholar

[23] C. Adamo and V.J. Barone: “Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models”, J. Chem. Phys., Vol. 108, (1999), pp. 664–675. http://dx.doi.org/10.1063/1.47542810.1063/1.475428Search in Google Scholar

[24] A.J. Sadlej: “Medium-size polarized basis-sets for high level correlated calculations of molecular electric properties”, Collec. Czech. Chem. Commun., Vol. 53, (1988), pp. 1995–2016. http://dx.doi.org/10.1135/cccc1988199510.1135/cccc19881995Search in Google Scholar

[25] A.J. Sadlej and M. Urban: “Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. III Alkali (Li, Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr) atoms”, J. Mol. Struct., Vol. 234, (1991), pp. 147–171. http://dx.doi.org/10.1016/0166-1280(91)89010-X10.1016/0166-1280(91)89010-XSearch in Google Scholar

[26] J.M.L. Martin: “Some observations and case studies on basis set convergence in density functional theory”, In: P. Geerlings, e.a. (Eds.): Density functional theory: a bridge between chemistry and physics, VUBPress, Brussels, 1999. Search in Google Scholar

[27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, GAUSSIAN 98, Gaussian, Inc., Pittsburgh PA, 2001. Search in Google Scholar

[28] A.A. Granovsky: http://classic.chem.msu.su/gran/gamess/index.html. Search in Google Scholar

[29] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery: “General atomic and molecular electronic structure system”, J. Comput. Chem., Vol. 14, (1993), pp. 1347–1363. http://dx.doi.org/10.1002/jcc.54014111210.1002/jcc.540141112Search in Google Scholar

[30] W.J. Hehre, L. Radom, P.v.R. Schleyer and J.A. Pople: Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, 1986. Search in Google Scholar

[31] R.U. Lemieux: Molecular Rearrangements, P. de Mayo, Interscience, New York, 1964. Search in Google Scholar

[32] R.U. Lemieux, A.A. Pavia, J.C. Martin and K.A. Watanabe: “Solvation effects on conformational equilibria. Studies related to the conformational properties of 2-methoxytetrahydropyran and related methyl glycopyranosides”, Can. J. Chem., Vol. 47, (1969), pp. 4427–2239. http://dx.doi.org/10.1139/v69-73110.1139/v69-731Search in Google Scholar

[33] I. Tvaroska: Theoretical Chemistry of Biological Systems, G. Naray-Szabo, Elsevier, Amsterdam, 1986. Search in Google Scholar

[34] L. Schliefer, H. Senderowitz, P. Aped, E. Tartakovsky, and B. Fuchs: “Diagnostic structural criteria for the anomeric effect in carbohydrates and inferences of general sifnificance on their scope and limitations”, Carbohydr. Res., Vol. 206, (1990), pp. 21–39. http://dx.doi.org/10.1016/0008-6215(90)84003-D10.1016/0008-6215(90)84003-DSearch in Google Scholar

[35] K. Brandendurg: Diamond. Version 2.1.d, Crystal Impact GbR, Bonn, Germany, 2000. Search in Google Scholar

Published Online: 2007-3-1
Published in Print: 2007-3-1

© 2005 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-006-0058-5/html
Scroll to top button