Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 5, Issue 3

Issues

Volume 13 (2015)

Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate

Martin Přádný
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
  • Center for Cell Therapy and Tissue Repair, Charles University, 2nd Faculty of Medicine, 150 00, Prague 5, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lenka Martinová / Jiří Michálek
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
  • Center for Cell Therapy and Tissue Repair, Charles University, 2nd Faculty of Medicine, 150 00, Prague 5, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tat’ána Fenclová
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Krumbholcová
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
  • Center for Cell Therapy and Tissue Repair, Charles University, 2nd Faculty of Medicine, 150 00, Prague 5, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-04-26 | DOI: https://doi.org/10.2478/s11532-007-0021-0

Abstract

The goal was to electrospin 2-hydroxyethyl methacrylate — based biocompatible polymers and prepare submicron fibres (nanofibers) for biomedicinal applications. Syntheses of poly(2-hydroxyethyl methacrylate) (HEMA) and its copolymer with 2-ethoxyethyl methacrylate (EOEMA), and their characterization by viscometry and molecular weight are described. Their relation to electrospinning is discussed. Electrospinning of HEMA homopolymer from water-ethanol is successful for molecular weights 6.31 × 105 and 1.80 × 106 g/mol. Electrospinning of HEMA/EOEMA copolymers is feasible from ethanol.

Keywords: Nanofibers; electrospinning; 2-hydroxyethyl methacrylate; 2-ethoxyethyl methacrylate

  • [1] J. Zeleny: “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at thin surfaces”, Phys. Rev., Vol.3, (1914), pp.69–91. http://dx.doi.org/10.1103/PhysRev.3.69CrossrefGoogle Scholar

  • [2] G. Taylor: “Disintegration of water drops in an electrical field”, Proc. R. Soc. Lon. Ser-A, Vol. 280, (1964), pp. 383–397. CrossrefGoogle Scholar

  • [3] A. Formhals: Process and apparatus for preparing artificial threads, US 1,975,504. Google Scholar

  • [4] P. Gupta, S.R. Trenor, E.T. Long and G.L. Wilkes: “In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(methyl methacrylate-co-2-hydroxyethyl acrylate) Fibers during Electrospinning”, Macromolecules, Vol. 37, (2005), pp. 9211–9218. http://dx.doi.org/10.1021/ma048844gCrossrefGoogle Scholar

  • [5] J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen and F. Ko: “Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven materials”, Polymer, Vol. 46, (2005), pp. 1625–1634. http://dx.doi.org/10.1016/j.polymer.2004.11.029CrossrefGoogle Scholar

  • [6] D.H. Reneker, A.L. Yarin H. Fong and S. Koombhongse: “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, J. Appl. Phys., Vol. 87, (2000), pp. 4531–4547. http://dx.doi.org/10.1063/1.373532CrossrefGoogle Scholar

  • [7] S. Koombhongse, W.X. Liu and D.H. Reneker: “Flat polymer ribbons and other shapes by electrospinning”, J. Polym. Sci. Pol. Phys., Vol. 39, (2001), pp. 2598–2606. http://dx.doi.org/10.1002/polb.10015CrossrefGoogle Scholar

  • [8] S.A. Angadjivand, M.G. Schwartz, P.D. Eitzman and M.E. Jones: Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid, US 6375886. Google Scholar

  • [9] E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Palowski and G.L. Bowlin: “Tailoring Tissue Engineering Scaffolds by Employing Electrostatic Processing Techniques: A Study of Poly (Glycolic Acid)”, J. Macromol. Sci. Pur., Vol. A38, (2001), pp. 1231–1238. http://dx.doi.org/10.1081/MA-100108380CrossrefGoogle Scholar

  • [10] L. Larondo and R.St. John Manley: “Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties”, J. Polym. Sci. Pol. Phys., Vol. 19, (1981), pp. 909–920. http://dx.doi.org/10.1002/pol.1981.180190601CrossrefGoogle Scholar

  • [11] O. Jirsák, F. Sanetrník, D. Lukáš, V. Kotek, L. Martinová and J. Chaloupek: Způsob výroby nanovláken z polymerního roztoku elektrostatickým zvlákňováním a zařízení k provádění způsobu, CZ 294274 (B6), WO 2005024101. Google Scholar

  • [12] B. Dvořánková, Z. Holíková, J. Vacík, R. Konigová, Z. Kapounková, J. Michálek, M. Přádný and K. Smetana: “Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support — clinical study”, Int. J. Dermatol., Vol. 42, (2003), pp. 219–223. http://dx.doi.org/10.1046/j.1365-4362.2003.01792.xCrossrefGoogle Scholar

  • [13] J. Vacík, B. Dvořánková, J. Michálek, M. Přádný, E. Krumbholcová, T. Fenclová and K. Smetana: “Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate — in vitro study”, J. Mater. Sci-Mater. M., in press. Web of ScienceGoogle Scholar

  • [14] M. Přádný, P. Lesný, J. Fiala, J. Vacík, M. Šlouf, J. Michálek and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 1. Copolymers of 2-hydroxyethyl methacrylate with methacrylic acid”, Collect. Czech. Chem. C., Vol. 68, (2003), pp. 812–822. http://dx.doi.org/10.1135/cccc20030812CrossrefGoogle Scholar

  • [15] M. Přádný, P. Lesný, K. Smetana, J. Vacík, M. Šlouf, J. Michálek and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 2. Copolymers with positive and negative charges, polyelectrolyte complexes”, J. Mater. Sci-Mater. M., Vol. 16, (2005), pp. 767–773. http://dx.doi.org/10.1007/s10856-005-2615-4CrossrefGoogle Scholar

  • [16] J. Michálek, M. Přádný, A. Artyukhov, M. Šlouf, J. Vacík and K. Smetana Jr.: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 3. Hydrogels as carriers for immobilization of proteins”, J. Mater. Sci-Mater. M., Vol. 16, (2005), pp. 783–786. http://dx.doi.org/10.1007/s10856-005-2617-2CrossrefGoogle Scholar

  • [17] M. Přádný, J. Michálek, P. Lesný, A. Hejčl, J. Vacík, M. Šlouf and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: Hydrolytically degradable materials”, J. Mater. Sci-Mater. M., Vol. 17, (2006), pp. 1357–1364. http://dx.doi.org/10.1007/s10856-006-0611-yCrossrefGoogle Scholar

  • [18] X. Wang, S. Yang, C. Drew, L. A. Samuelson and J. Kumar: “Reactive electrospinning of hydrogel nanofibers”, Polymer Preprints No. 2, Vol. 44, (2003), pp. 108–109. Google Scholar

  • [19] S.H. Kim, R.E. Green and S.H. Kim: “Reactive electrospinning of 2-hydroxyethyl methacrylate”, PMSE preprints, Vol. 91, (2004), pp. 527–528. Google Scholar

  • [20] S.H. Kim, S.H. Kim, S. Nair and E. Moore: “Reactive Electrospinning of Cross-Linked Poly(2-hydroxyethyl methacrylate) Nanofibers and Elastic Properties of Individual Hydrogel Nanofibers in Aqueous Solutions”, Macromolecules, Vol. 38, (2005), pp. 3719–3723. http://dx.doi.org/10.1021/ma050308gCrossrefGoogle Scholar

  • [21] J. Ma, B. Liang, P. Cui, H. Dai and R. Huang: “Dilute solution properties of hydrophobically associating polyacrylamide: fitted by different equations”, Polymer, Vol. 44, (2003), pp. 1281–1286. http://dx.doi.org/10.1016/S0032-3861(02)00851-0CrossrefGoogle Scholar

  • [22] B. L. Hager and G. C. Berry: “Moderately concentrated solutions of polystyrene. I. Viscosity as a function of concentration, temperature, and molecular weight”, J. Polym. Sci. Pol. Phys., Vol. 20, (1982), pp. 911–928. http://dx.doi.org/10.1002/pol.1982.180200513CrossrefGoogle Scholar

  • [23] P. Gupta, C. Elkins, T.E. Long and G.L. Wilkes: “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent”, Polymer, Vol. 46, (2005), pp. 4799–4810. Google Scholar

  • [24] B. Vollmert: Grundriss der makromolekularen Chemie, Springer-Verlag, Berlin, 1962, pp. 390–410. Google Scholar

  • [25] Y. Fang, C.X. Ma, Q. Chen and X.B. Lu: “Radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto chloroprene rubber membrane. II. Characterization of grafting copolymer”, J. Appl. Polym. Sci., Vol. 68B, (1998), pp. 1745–1750. http://dx.doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1745::AID-APP4>3.0.CO;2-JCrossrefGoogle Scholar

  • [26] L. Martinová: “10th International Conference STRUTEX”, Liberec, Czech Republic 2003. Google Scholar

  • [27] P. Lesný, M. Přádný, L. Martinová, J. Michálek, O. Jirsák and E. Syková: Biomaterial on the base of nanofibers, Patent application PV 2007-54. Google Scholar

  • [28] S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek: “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, nonspecific polymer-polymer interaction limit”, Polymer, Vol. 46, (2005), pp. 3372–3384. http://dx.doi.org/10.1016/j.polymer.2005.03.011CrossrefGoogle Scholar

About the article

Published Online: 2007-04-26

Published in Print: 2007-09-01


Citation Information: Open Chemistry, Volume 5, Issue 3, Pages 779–792, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-007-0021-0.

Export Citation

© 2007 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Roghieh Alizadeh, Mohammad Karimi, Reza Teimuri Mofrad, Karim Asadpour-Zeynali, and Ali Akbar Entezami
Polymer-Plastics Technology and Engineering, 2015, Volume 54, Number 1, Page 21
[2]
Martin Přádný, Miroslava Dušková-Smrčková, Karel Dušek, Olga Janoušková, Zhansaya Sadakbayeva, Miroslav Šlouf, and Jiří Michálek
Journal of Polymer Research, 2014, Volume 21, Number 11
[3]
Roghieh Alizadeh, Mohammad Karimi, Reza Teimuri Mofrad, and Ali Akbar Entezami
Journal of Polymer Research, 2014, Volume 21, Number 8
[4]
Nithya Ramalingam, Thirupathur Srinivasan Natarajan, and Sheeja Rajiv
Advances in Polymer Technology, 2013, Volume 32, Number 3, Page n/a
[5]
Michala Rampichová, Lenka Martinová, Eva Košťáková, Eva Filová, Andrea Míčková, Matěj Buzgo, Jiří Michálek, Martin Přádný, Alois Nečas, David Lukáš, and Evžen Amler
Journal of Materials Science: Materials in Medicine, 2012, Volume 23, Number 2, Page 555
[6]
S.C.P. Norris, J. Humpolíčková, E. Amler, M. Huranová, M. Buzgo, R. Macháň, D. Lukáš, and M. Hof
Acta Biomaterialia, 2011, Volume 7, Number 12, Page 4195
[7]
D. Lukáš, A. Sarkar, L. Martinová, K. Vodsed'álková, D. Lubasová, J. Chaloupek, P. Pokorný, P. Mikeš, J. Chvojka, and M. Komárek
Textile Progress, 2009, Volume 41, Number 2, Page 59

Comments (0)

Please log in or register to comment.
Log in