Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 5, Issue 3

Issues

Volume 13 (2015)

Molecular dynamics simulations of potassium channels

Carmen Domene
Published Online: 2007-05-20 | DOI: https://doi.org/10.2478/s11532-007-0028-6

Abstract

Despite the complexity of ion-channels, MD simulations based on realistic all-atom models have become a powerful technique for providing accurate descriptions of the structure and dynamics of these systems, complementing and reinforcing experimental work. Successful multidisciplinary collaborations, progress in the experimental determination of three-dimensional structures of membrane proteins together with new algorithms for molecular simulations and the increasing speed and availability of supercomputers, have made possible a considerable progress in this area of biophysics. This review aims at highlighting some of the work in the area of potassium channels and molecular dynamics simulations where numerous fundamental questions about the structure, function, folding and dynamics of these systems remain as yet unresolved challenges.

Keywords: Membrane proteins; ion channels; potassium channels; lipids; molecular dynamics simulations; selectivity; gating

  • [1] E. Wallin and G. von Heijne: “Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms”, Protein. Sci., Vol 7, (1998), pp. 1029–1038. http://dx.doi.org/10.1002/pro.5560070420CrossrefGoogle Scholar

  • [2] C.A. Hubner and T.J. Jentsch: “Ion channel diseases”, Hum. Mol. Genet., Vol 11, (2002), pp. 2435–2445. CrossrefGoogle Scholar

  • [3] F.M. Ashcroft: Ion channels and disease, Academic Press, San Diego, 2000. Google Scholar

  • [4] D.M. Kullmann: “The neural channelophaties”, Brain, Vol. 125, (2002), pp. 1177–1195. CrossrefGoogle Scholar

  • [5] E. Marban: “Cardiac channelopathies”, Nature, Vol. 415, (2002), pp. 213–218. Google Scholar

  • [6] J. Drews: “Drug discovery: A historical perspective”, Science, Vol. 287, (2000), pp. 1960–1964. Google Scholar

  • [7] A.L. Hopkins and C.R. Groom: “The druggable genome”, Nat. Rev. Drug Disc., Vol 1, (2003), pp. 727–730. Google Scholar

  • [8] C. Kambach: “Pipelines, robots, crystals and biology: What use high throughput solving structures of challenging targets?”, Curr. Protein Pept. Sc., Vol 8, (2007), pp. 205–217. CrossrefGoogle Scholar

  • [9] C. Farre, S. Stoelzle, C. Haarmann, M. George, A. Bruggemann and N. Fertig: “Automated ion channel screening: Patch clamping made easy”, Expert Opin. Ther. Tar., Vol 11, (2007), pp. 557–565. CrossrefGoogle Scholar

  • [10] A. Bruggemann, S. Stoelzle, M. George, J.C. Behrends and N. Fertig: “Microchip technology for automated and parallel patch-clamp recording”, Small, Vol. 2, (2006), pp. 840–846. CrossrefGoogle Scholar

  • [11] C. Domene, P.J. Bond and M.S.P. Sansom: “Membrane protein simulations: Ion channels and bacterial outer membrane proteins”, Adv. Prot. Chem., Vol 66. (2003), pp. 159–193. CrossrefGoogle Scholar

  • [12] P.C. Biggin and M.S.P. Sansom: “Simulation approaches to ion channel gating”, Biophys. J., Vol 82, (2002), p. 2530. Google Scholar

  • [13] W.L. Ash, T. Stockner, J.L. MacCallum and D.P. Tieleman: “Computer modeling of polyleucine-based coiled coil dimers in a realistic membrane environment: Insight into helix-helix interactions in membrane proteins”, Biochemistry, Vol. 43, (2004), pp. 9050–9060. CrossrefGoogle Scholar

  • [14] B. Roux: “Theoretical and computational models of ion channels”, Curr. Opin. Struc. Biol., Vol 12, (2002), pp. 182–189. CrossrefGoogle Scholar

  • [15] B. Roux and K. Schulten: “Computational studies of membrane channels”, Structure, Vol. 12, (2004), pp. 1343–1351. CrossrefGoogle Scholar

  • [16] B. Roux, T. Allen, S. Berneche and W. Im: “Theoretical and computational models of biological ion channels”, Q. Rev. Biophys., Vol 37, (2004), pp. 15–103. CrossrefGoogle Scholar

  • [17] B.O. Brandsdal, F. Osterberg, M. Almlof, I. Feierberg, V.B. Luzhkov and J. Aqvist: “Free energy calculations and ligand binding”, Adv. Protein Chem., Vol 66, (2003), pp. 123–158. CrossrefGoogle Scholar

  • [18] S.H. Chung and S. Kuyucak: “Recent advances in ion channel research”, BBA-Biomembranes, Vol. 1565, (2002), pp. 267–286. Google Scholar

  • [19] B.L. de Groot and H. Grubmuller: “The dynamics and energetics of water permeation and proton exclusion in aquaporins”, Curr. Opin. Struc. Biol., Vol 15, (2005), pp. 176–183. Google Scholar

  • [20] J. Gumbart, Y. Wang, A. Aksimentiev, E. Tajkhorshid and K. Schulten: “Molecular dynamics simulations of proteins in lipid bilayers”, Curr. Opin. Struc. Biol., Vol 15, (2005), pp. 423–431. CrossrefGoogle Scholar

  • [21] B. Roux: “Ion conduction and selectivity in k+ channels”, Annu. Rev. Biophys. Bio., Vol 34, (2005), pp. 153–171. CrossrefGoogle Scholar

  • [22] O.S. Andersen, R.E. Koeppe and B. Roux: “Gramicidin channels”, IEEE Trans NanoBio, Vol. 4, (2005), pp. 10–20. Google Scholar

  • [23] W.L. Ash, M.R. Zlomislic, E.O. Oloo and D.P. Tieleman: “Computer simulations of membrane proteins”, BBA-Biomembranes, Vol. 1666, (2004), pp. 158–189. Google Scholar

  • [24] B. Corry and S.H. Chung: “Mechanisms of valence selectivity in biological ion channels”, Cell. Mol. Life Sci., Vol 63, (2006), pp. 301–315. CrossrefGoogle Scholar

  • [25] S.H. Chung and B. Corry: “Three computational methods for studying permeation, selectivity and dynamics in biological ion channels”, Soft Matter., Vol 1, (2005), pp. 417–427. CrossrefGoogle Scholar

  • [26] P.J. Bond and M.S.P. Sansom: “The simulation approach to bacterial outer membrane proteins”, Mol. Membr. Biol., Vol 21, (2004), pp. 151–161. CrossrefGoogle Scholar

  • [27] A. Giorgetti and P. Carloni: “Molecular modeling of ion channels: Structural predictions”, Curr. Opin. Chem. Biol., Vol 7, (2003), pp. 150–156. CrossrefGoogle Scholar

  • [28] B. Hille: Ionic channels of excitable membranes, 3rd Ed, Mass.: Sinauer Associates Inc., Sunderland, 2001. Google Scholar

  • [29] G. Yellen: “The bacterial k+ channel structure and its implications for neuronal channels”, Curr. Opin. Neurobiol., Vol 9, (1999), pp. 267–273. CrossrefGoogle Scholar

  • [30] G. Yellen: “The voltage-gated potassium channels and their relatives”, Nature, Vol. 419, (2002), pp. 35–42. Google Scholar

  • [31] L. Heginbotham, Z. Lu, T. Abramsom and R. MacKinnon: “Mutations in the k+channel signature sequence”, Biophys. J., Vol 66, (1994), pp. 1061–1067. CrossrefGoogle Scholar

  • [32] F.I. Valiyaveetil, M. Sekedat, R. MacKinnon and T.W. Muir: “Glycine as a d-amino acid surrogate in the k+-selectivity filter”, P. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 17045–17049. CrossrefGoogle Scholar

  • [33] F.I. Valiyaveetil, M. Sekedat, T.W. Muir and R. MacKinnon: “Why are glycine residues absolutely conserved in the selectivity filter of potassium channels?” Biophys. J., Vol 86, (2004), pp. 130A–130A. Google Scholar

  • [34] M.J. Karplus and J.A. McCammon: “Molecular dynamics simulations of biomolecules”, Nat. Struct. Biol., Vol 9, (2002), pp. 646–652. CrossrefGoogle Scholar

  • [35] B. Roux and S. Berneche: “On the potential functions used in molecular dynamics simulations of ion channels”, Biophys. J., Vol 82, (2002), pp. 1681–1684. CrossrefGoogle Scholar

  • [36] W. Humphrey, A. Dalke and K. Schulten: “VMD: Visual molecular dynamics”, J. Mol. Graph. Model., Vol 14, (1996), pp. 33–38. CrossrefGoogle Scholar

  • [37] M.S.P. Sansom: “Ion channels: Molecular modeling and simulation studies”, Methods Enzymol., Vol 293, (1998), pp. 647–693. CrossrefGoogle Scholar

  • [38] M.S.P. Sansom, I.H. Shrivastava, K.M. Ranatunga and G.R. Smith: “Simulations of ion channels-watching ions and water move”, Trends Biochem. Sci., Vol 25, (2000), pp. 368–374. CrossrefGoogle Scholar

  • [39] C. Domene, S. Haider and M.S.P. Sansom: “Ion channel structures: A review of recent progress”, Curr. Opin. Drug Discov. Dev., Vol 6, (2003), p. 611. Google Scholar

  • [40] C.E. Capener, H.J. Kim, T. Arinaminpathy and M.S.P. Sansom: “Ion channels: Structural bioinformatics and modelling”, Hum. Mol. Genet., Vol 11, (2002), pp. 2425–2433. CrossrefGoogle Scholar

  • [41] P.C. Jordan: “Fifty years of progress in ion channel research”, IEEE Trans NanoBio, Vol. 4, (2005), pp. 3–9. Google Scholar

  • [42] W.F. van Gunsteren and H.J.C. Berendsen: Gromos-87 manual, Biomos BV, Groningen, 1987. Google Scholar

  • [43] W.L. Jorgensen and J. Tirado-Rives: “Development of the opls-aa force field for organic and biomolecular systems”, Abstr. Pap. Am. Chem. S., Vol 216, (1998), pp. 043–COMP. Google Scholar

  • [44] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus: “Charmm: A program for macromolecular energy, minimisation, and dynamics calculations”, J. Comp. Chem., Vol 4, (1983), pp. 187–217. Google Scholar

  • [45] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. Debolt, D. Ferguson, G. Seibel and P. Kollman: “Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and freeenergy calculations to simulate the structural and energetic properties of molecules”, Comp. Phys. Comm., Vol 91, (1995), pp. 1–41. CrossrefGoogle Scholar

  • [46] T.W. Allen, A. Bliznyuk, A.P. Rendell, S. Kuyucak and S.H. Chung: “The potassium channel: Structure, selectivity and diffusion”, J. Chem. Phys., Vol 112, (2000), pp. 8191–8204. Google Scholar

  • [47] V.B. Luzhkov and J. Aqvist: “A computational study of ion binding and protonation states in the kcsa potassium channel”, Biochim. Biophys. Acta, Vol. 1481, (2000), pp. 360–370. Google Scholar

  • [48] S. Berneche and B. Roux: “Energetics of ion conduction through the K+ channel”, Nature, Vol. 414, (2001), pp. 73–77. Google Scholar

  • [49] L. Guidoni and P. Carloni: “Potassium permeation through the KcsA channel: A density functional study”, Biochim. Biophys. Acta, Vol. 1563, (2002), pp. 1–6. Google Scholar

  • [50] D. Bucher, S. Raugei, L. Guidoni, M. Dal Peraro, U. Rothlisberger, P. Carloni and M.L. Klein: “Polarization effects and charge transfer in the kcsa potassium channel”, Biophys. Chem., Vol 124, (2006), pp. 292–301. CrossrefGoogle Scholar

  • [51] A.A. Bliznyuk and A.P. Rendell: “Electronic effects in biomolecular simulations: Investigation of the KcsA potassium ion channel”, J. Phys. Chem. B, Vol. 108, (2004), pp. 13866–13873. CrossrefGoogle Scholar

  • [52] P. Huetz, C. Boiteux, M. Compoint, C. Ramseyer and C. Girardet: “Incidence of partial charges on ion selectivity in potassium channels”, J. Chem. Phys., Vol 124, (2006). Google Scholar

  • [53] M. Compoint, C. Ramseyer and P. Huetz: “Ab initio investigation of the atomic charges in the kcsa channel selectivity filter”, Chem. Phys. Lett., Vol 397, (2004), pp. 510–515. CrossrefGoogle Scholar

  • [54] S. Kraszewski, C. Boiteux, M. Langner and C. Ramseyer: “Insight into the origins of the barrier-less knock-on conduction in the KcsA channel: Molecular dynamics simulations and ab initio calculations”, Phys. Chem. Chem. Phys., Vol 9, (2007), pp. 1219–1225. CrossrefGoogle Scholar

  • [55] M. Compoint, C. Boiteux, P. Huetz, C. Ramseyer and C. Girardet: “Role of water molecules in the KcsA protein channel by molecular dynamics calculations”, Phys. Chem. Chem. Phys., Vol 7, (2005), pp. 4138–4145. CrossrefGoogle Scholar

  • [56] A.G. Lee: “How lipids affect the activities of integral membrane proteins”, BBA-Biomembranes, Vol. 1666, (2004), pp. 62–87. Google Scholar

  • [57] M.P. Allen and D.J. Tildesley: Computer simulation of liquids, Oxford University Press, Oxford, 1987. Google Scholar

  • [58] W. Weber, P.H. Hunenberger and J.A. McCammon: “Molecular dynamics simulations of a polyalanine octapeptide under ewald boundary conditions: Influence of artificial periodicity on peptide conformation”, J. Phys. Chem. B, Vol. 104, (2000), pp. 3668–3675. CrossrefGoogle Scholar

  • [59] P.H. Hunenberger and J.A. McCammon: “Effect of artificial periodicity in simulations of biomolecules under ewald boundary conditions: A continuum electrostatics study”, Biophys. Chem., Vol 78, (1999), pp. 69–88. CrossrefGoogle Scholar

  • [60] P.H. Hunenberger and J.A. McCammon: “Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: A continuum electrostatics study”, J. Chem. Phys., Vol 110, (1999), pp. 1856–1872. Google Scholar

  • [61] D. Bostick and M.L. Berkowitz: “The implementation of slab geometry for membrane-channel molecular dynamics simulations”, Biophys. J., Vol 85, (2003), pp. 97–107. CrossrefGoogle Scholar

  • [62] R.H. Wood: “Continuum electrostatics in a computational universe with finite cutoff radii and periodic boundary-conditions-correction to computed free-energies of ionic solvation”, J. Chem. Phys., Vol 103, (1995), pp. 6177–6187. Google Scholar

  • [63] C.L. Brooks: “The influence of long-range force truncation on the thermodynamics of aqueous ionic-solutions”, J. Chem. Phys., Vol 86, (1987), pp. 5156–5162. Google Scholar

  • [64] T.P. Straatsma and H.J.C. Berendsen: “Free-energy of ionic hydration-analysis of a thermodynamic integration technique to evaluate free-energy differences by molecular-dynamics simulations”, J. Chem. Phys., Vol 89, (1988), pp. 5876–5886. Google Scholar

  • [65] M.A. Kastenholz and P.H. Hunenberger: “Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods”, J. Phys. Chem. B, Vol. 108, (2004), pp. 774–788. CrossrefGoogle Scholar

  • [66] M. Patra, M. Karttunen, M.T. Hyvonen, E. Falck, P. Lindqvist and I. Vattulainen: “Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions”, Biophys. J., Vol 84, (2003), pp. 3636–3645. CrossrefGoogle Scholar

  • [67] M. Patra, M. Karttunen, M.T. Hyvonen, E. Falck and I. Vattulainen: “Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in longrange electrostatic interactions”, J. Phys. Chem. B, Vol. 108, (2004), pp. 4485–4494. CrossrefGoogle Scholar

  • [68] C. Anezo, A.H. de Vries, H.D. Holtje, D.P. Tieleman and S.J. Marrink: “Methodological issues in lipid bilayer simulations”, J. Phys. Chem. B, Vol. 107, (2003), pp. 9424–9433. CrossrefGoogle Scholar

  • [69] H. Schreiber and O. Steinhauser: “Cutoff size does strongly influence moleculardynamics results on solvated polypeptides”, Biochemistry, Vol. 31, (1992), pp. 5856–5860. CrossrefGoogle Scholar

  • [70] H. Schreiber and O. Steinhauser: “Molecular-dynamics studies of solvated polypeptides-why the cutoff scheme does not work”, Chem. Phys., Vol 168, (1992), pp. 75–89. CrossrefGoogle Scholar

  • [71] T. Rog, K. Murzyn and M. Pasenkiewicz-Gierula: “Molecular dynamics simulations of charged and neutral lipid bilayers: Treatment of electrostatic interactions”, Acta Biochim. Pol., Vol 50, (2003), pp. 789–798. Google Scholar

  • [72] M. Bergdorf, C. Peter and P.H. Hunenberger: “Influence of cut-off truncation and artificial periodicity of electrostatic interactions in molecular simulations of solvated ions: A continuum electrostatics study”, J. Chem. Phys., Vol 119, (2003), pp. 9129–9144. Google Scholar

  • [73] R. Walser, P.H. Hunenberger and W.F. van Gunsteren: “Comparison of different schemes to treat long-range electrostatic interactions in molecular dynamics simulations of a protein crystal”, Proteins, Vol. 43, (2001), pp. 509–519. CrossrefGoogle Scholar

  • [74] M. Marchi and K. Akasaka: “Simulation of hydrated bpti at high pressure: Changes in hydrogen bonding and its relation with nmr experiments”, J. Phys. Chem. B, Vol. 105, (2001), pp. 711–714. CrossrefGoogle Scholar

  • [75] B. Ensing, M. De Vivo, Z. Liu, P. Moore and M.L. Klein: “Metadynamics as a tool for exploring free energy landscapes of chemical reactions”, Accounts Chem. Res., Vol 39, (2006), pp. 73–81. CrossrefGoogle Scholar

  • [76] A. Laio and M. Parrinello: “Escaping free-energy minima”, P. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 12562–12566. CrossrefGoogle Scholar

  • [77] M. Ceccarelli, C. Danelon, A. Laio and M. Parrinello: “Microscopic mechanism of antibiotics translocation through a porin”, Biophys. J., Vol 87, (2004), pp. 58–64. CrossrefGoogle Scholar

  • [78] F.L. Gervasio, M. Parrinello, M. Ceccarelli and M.L. Klein: “Exploring the gating mechanism in the clc chloride channel via metadynamics”, J. Mol. Biol., Vol 361, (2006), pp. 390–398. CrossrefGoogle Scholar

  • [79] T. Vora, B. Corry and S.H. Chung: “Brownian dynamics investigation into the conductance state of the mscs channel crystal structure”, Biochim. Biophys. Acta, Vol. 1758, (2006), pp. 730–737. Google Scholar

  • [80] B. Corry, M. O’Mara and S.H. Chung: “Conduction mechanisms of chloride ions in clc-type channels”, Biophys. J., Vol 86, (2004), pp. 846–860. CrossrefGoogle Scholar

  • [81] V. Krishnamurthy and S.H. Chung: “Adaptive brownian dynamics simulation for estimating potential mean force in ion channel permeation”, IEEE Trans NanoBio, Vol. 5, (2006), pp. 126–138. Google Scholar

  • [82] S. Furini, F. Zerbetto and S. Cavalcanti: “Application of the poisson-nernst-planck theory with space-dependent diffusion coefficients to kcsa”, Biophys. J., Vol 91, (2006), pp. 3162–3169. CrossrefGoogle Scholar

  • [83] V. Jogini and B. Roux: “Electrostatics of the intracellular vestibule of k+ channels”, J. Mol. Biol., Vol 354, (2005), pp. 272–288. CrossrefGoogle Scholar

  • [84] A.B. Mamonov, M.G. Kurnikova and R.D. Coalson: “Diffusion constant of k+ inside gramicidin a: A comparative study of four computational methods”, Biophys. Chem., Vol 124, (2006), pp. 268–278. CrossrefGoogle Scholar

  • [85] R.D. Coalson and M.G. Kurnikova: “Poisson-nernst-planck theory approach to the calculation of current through biological ion channels”, IEEE Trans NanoBio, Vol. 4, (2005), pp. 81–93. Google Scholar

  • [86] D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson and D. Gillespie: “The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel”, J. Chem. Phys., Vol 125, (2006), p. 34901. Google Scholar

  • [87] E. Perozo, D.M. Cortes and L.G. Cuello: “Three-dimensional architecture and gating mechanism of a K+ channel studied by epr spectroscopy”, Nat. Struct. Biol., Vol 5, (1998), pp. 459–469. CrossrefGoogle Scholar

  • [88] E. Perozo, D.M. Cortes and L.G. Cuello: “Structural rearrangements underlying k+-channel activation gating”, Science, Vol. 285, (1999), pp. 73–78. Google Scholar

  • [89] E. Perozo, Y.S. Liu, P. Smopornpisut, D.M. Cortes and L.G. Cuello: “A structural perspective of activation gating in k+ channels”, J. Gen. Physiol., Vol 116, (2000), p. 5a. Google Scholar

  • [90] C.M. Armstrong: “Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axon”, J. Gen. Physiol., Vol 58, (1971), pp. 413–437. CrossrefGoogle Scholar

  • [91] K. Khodakhah, A. Melishchuk and C.M. Armstrong: “Killing K channels with TEA+”, P. Natl. Acad. Sci. USA, Vol. 94, (1998), pp. 13335–13338. Google Scholar

  • [92] L. Heginbotham and R. MacKinnon: “The aromatic binding site for tetraethylammonium ion on potassium channels”, Neuron, Vol. 8, (1992), pp. 483–491. CrossrefGoogle Scholar

  • [93] M. Zhou, J.H. Morais-Cabral, S. Mann and R. MacKinnon: “Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors”, Nature, Vol. 411, (2001), pp. 657–661. Google Scholar

  • [94] C. Domene, A. Grottesi and M.S. Sansom: “Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1.”, Biophys. J., Vol 87(1), (2004), pp. 256–267. Google Scholar

  • [95] S.H. Chung, T.W. Allen and S. Kuyucak: “Conducting-state properties of the kcsa potassium channel from molecular and brownian dynamics simulations”, Biophys. J., Vol 82, (2002), pp. 628–645. CrossrefGoogle Scholar

  • [96] R.J. Mashl, Y.Z. Tang, J. Schnitzer and E. Jakobsson: “Hierarchical approach to predicting permeation in ion channels”, Biophys. J., Vol 81, (2001), pp. 2473–2483. CrossrefGoogle Scholar

  • [97] P.C. Biggin and M.S.P. Sansom: “Open-state models of a potassium channel”, Biophys. J., Vol 83, (2002), pp. 1867–1876. CrossrefGoogle Scholar

  • [98] J. Youxing, A. Lee, C. Jiayun, M. Cadene, B.T. Chait and R. MacKinnon: “Crystal structure and mechanism of a calcium-gated potassium channel”, Nature, Vol. 417, (2002), pp. 515–522. Google Scholar

  • [99] Q.X. Jiang, D.N. Wang and R. MacKinnon: “Electron microscopic analysis of kvap voltage-dependent k+ channels in an open conformation”, Nature, Vol. 430, (2004), pp. 806–810. Google Scholar

  • [100] V. Ruta and R. MacKinnon: “Localization of the voltage-sensor toxin receptor on kvap”, Biochemistry, Vol. 43, (2004), pp. 10071–10079. CrossrefGoogle Scholar

  • [101] J. Holyoake, C. Domene, J.N. Bright and M.S.P. Sansom: “KcsA closed and open: Modeling and simulations studies”, Eur. Biophys. J., Vol 33, (2004), pp. 238–246. Google Scholar

  • [102] Y. Jiang, V. Ruta, J. Chen, A. Lee and R. MacKinnon: “The principle of gating charge movement in a voltage-dependent k+ channel”, Nature, Vol. 423, (2003), pp. 42–48. Google Scholar

  • [103] Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait and R. MacKinnon: “X-ray structure of a voltage-dependent k+ channel”, Nature, Vol. 423, (2003), pp. 33–41. Google Scholar

  • [104] Z. Sands, A. Grottesi, M.S.P. Sansom: “Voltage-gated ion channels”, Curr. Biol., Vol 15, (2005), pp. R44–R47. Google Scholar

  • [105] C.S. Gandhi and E.Y. Isacoff: “Molecular models of voltage sensing”, J. Gen. Physiol., Vol 120, (2002), pp. 455–463. CrossrefGoogle Scholar

  • [106] D.M. Starace and F. Bezanilla: “A proton pore in a potassium channel voltage sensor reveals a focused electric field”, Nature, Vol. 427, (2004), pp. 548–553. Google Scholar

  • [107] L.G. Cuello, D.M. Cortes and E. Perozo: “Molecular architecture of the KvAp voltage-dependent K+ channel in a lipid bilayer”, Science, Vol. 306, (2004), pp. 491–495. Google Scholar

  • [108] S.B. Long, E.B. Campbell and R. Mackinnon: “Voltage sensor of kv1.2: Structural basis of electromechanical coupling”, Science, Vol. 309, (2005), pp. 903–908. Google Scholar

  • [109] S.B. Long, E.B. Campbell and R. Mackinnon: “Crystal structure of a mammalian voltage-dependent shaker family K+ channel”, Science, Vol. 309, (2005), pp. 897–903. Google Scholar

  • [110] W. Treptow and M. Tarek: “Environment of the gating charges in the Kv1.2 shaker potassium channel”, Biophys. J., Vol 90, (2006), pp. L64–66. Google Scholar

  • [111] P.J. Bond and M.S.P. Sansom: “Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations”, P. Natl. Acad. Sci. USA, Vol. 104, (2007), pp. 2631–2636. CrossrefGoogle Scholar

  • [112] Z.A. Sands and M.S. Sansom: “How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain”, Structure, Vol. 15, (2007), pp. 235–244. CrossrefGoogle Scholar

  • [113] R.B. Bass, P. Strop, M. Barclay and D.C. Rees: “Crystal structure of escherichia coli mscs, a voltage-modulated and mechanosensitive channel”, Science, Vol. 298, (2002), pp. 1582–1587. Google Scholar

  • [114] G. Chang, R.H. Spencer, A.T. Lee, M.T. Barclay and D.C. Rees: “Structure of the mscl homolog from mycobacterium tuberculosis: A gated mechanosensitive ion channel”, Science, Vol. 282, (1998), pp. 2220–2226. Google Scholar

  • [115] Y.X. Jiang, A. Lee, J.Y. Chen, M. Cadene, B.T. Chait and R. MacKinnon: “The open pore conformation of potassium channels”, Nature, Vol. 417, (2002), pp. 523–526. Google Scholar

  • [116] S. Sukharev and A. Anishkin: “Mechanosensitive channels: What can we learn from ’simple’ model systems?”, Trends Neurosci, Vol. 27, (2004), pp. 345–351. CrossrefGoogle Scholar

  • [117] E. Perozo and D.C. Rees: “Structure and mechanism in prokaryotic mechanosensitive channels”, Curr. Opin. Struct. Biol., Vol 13, (2003), pp. 432–442. CrossrefGoogle Scholar

  • [118] P. Strop, R. Bass and D.C. Rees: “Prokaryotic mechanosensitive channels”, Adv. Protein. Chem., Vol 63, (2003), pp. 177–209. CrossrefGoogle Scholar

  • [119] B. Martinac, M. Buechner, A.H. Delcour, J. Adler and C. Kung: “Pressure-sensitive ion channel in escherichia coli”, P. Natl. Acad. Sci. USA, Vol. 84, (1987), pp. 2297–2301. CrossrefGoogle Scholar

  • [120] S.I. Sukharev, W.J. Sigurdson, C. Kung and F. Sachs: “Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL”, J. Gen. Physiol., Vol 113, (1999), pp. 525–539. CrossrefGoogle Scholar

  • [121] S. Sukharev, M.J. Schroeder and D.R. McCaslin: “Re-examining the multimeric structure of the large conductance bacterial mechanosensitive channel, mscl”, Biophys. J., Vol 76, (1999), pp. A138–A138. Google Scholar

  • [122] S. Sukharev: “Mechanosensitive channels in bacteria as membrane tension reporters”, FASEB J., Vol 13, (1999), pp. S55–S61. Google Scholar

  • [123] C.C. Hase, A.C. Ledain and B. Martinac: “Purification and functional reconstitution of the recombinant large mechanosensitive ion-channel (mscl) of escherichiacoli”, J. Biol. Chem., Vol 270, (1995), pp. 18329–18334. CrossrefGoogle Scholar

  • [124] L.E. Bilston and K. Mylvaganam: “Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading”, FEBS Lett., Vol 512, (2002), pp. 185–190. Google Scholar

  • [125] J. Gullingsrud, D. Kosztin and K. Schulten: “Structural determinants of mscl gating studied by molecular dynamics simulations”, Biophys. J., Vol 80, (2001), pp. 2074–2081. CrossrefGoogle Scholar

  • [126] J.R. Gullingsrud, D. Kosztin and K. Schulten: “MscL gating studied by molecular dynamics simulations”, Biophys. J., Vol 80, (2001), p. 497. Google Scholar

  • [127] J.R. Gullingsrud and K. Schulten: “Gating mechanisms of mscl studied by molecular dynamics simulations using applied surface tension”, Biophys. J., Vol 82, (2002), p. 3066. Google Scholar

  • [128] S. Sukharev, M. Betanzos, C.S. Chiang and H.R. Guy: “The gating mechanism of the large mechanosensitive channel mscl”, Nature, Vol. 409, (2001), pp. 720–724. Google Scholar

  • [129] G.R. Meyer, J. Gullingsrud, K. Schulten and B. Martinac: “Molecular dynamics study of mscl interactions with a curved lipid bilayer”, Biophys. J., Vol 91, (2006), pp. 1630–1637. CrossrefGoogle Scholar

  • [130] M.D. Edwards, Y.Z. Li, S. Kim, S. Miller, W. Bartlett, S. Black, S. Dennison, I. Iscla, P. Blount and J.U. Bowie et al.: “Pivotal role of the glycine-rich tm3 helix in gating the mscs mechanosensitive channel”, Nat. Struct. Biol., Vol 12, (2005), pp. 113–119. Google Scholar

  • [131] M.D. Edwards, I.R. Booth and S. Miller: “Gating the bacterial mechanosensitive channels: MscS a new paradigm?”, Curr. Opin. Microbiol., Vol 7, (2004), pp. 163–167. CrossrefGoogle Scholar

  • [132] M. Sotomayor, V. Vasquez, E. Perozo and K. Schulten: “Ion conduction through MscS as determined by electrophysiology and simulation”, Biophys. J., Vol 92, (2007), pp. 886–902. CrossrefGoogle Scholar

  • [133] A. Kuo, C. Domene, L. Johnson, D. Doyle and C. Venien-Bryan: “Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography”, Structure, Vol. 13, (2005), pp. 1463–1472. Google Scholar

  • [134] C. Domene, D. Doyle and C. Venien-Bryan: “Modeling of an ion channel in its open conformation”, Biophys. J., Vol 89, (2005), pp. L1–L3. Google Scholar

  • [135] J.L. Robertson and B. Roux: “One channel: Open and closed”, Structure, Vol. 13, (2005), pp. 1398–1400. CrossrefGoogle Scholar

  • [136] A. Grotessi, C. Domene, B. Hall and M.S.P. Sansom: “Conformational dynamics of M2 helices in KirBac channels: helix flexibility in relation to gating via molecular dynamics simulations”, Biochemistry, Vol. 44, (2005), pp. 14586–14594. CrossrefGoogle Scholar

  • [137] D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Cahit and R. MacKinnon: “The structure of the potassium channel: Molecular basis of k+ conduction and selectivity”, Science, Vol. 280, (1998), pp. 69–77. Google Scholar

  • [138] C. Domene and M.S.P. Sansom: “Potassium channel, ions, and water: Simulation studies based on the high resolution x-ray structure of kcsa”, Biophys. J., Vol 85, (2003), pp. 2787–2800. CrossrefGoogle Scholar

  • [139] I.H. Shrivastava and M.S.P. Sansom: “Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer”, Biophys. J., Vol 78, (2000), pp. 557–570. CrossrefGoogle Scholar

  • [140] L. Guidoni, V. Torre and P. Carloni: “Water and potassium dynamics inside the kcsa k+ channel”, FEBS Lett., Vol 477, (2000), pp. 37–42. CrossrefGoogle Scholar

  • [141] L. Guidoni and P. Carloni: “Potassium permeation through the kcsa channel: A density functional study”, Biochim. Biophys. Acta, Vol. 1563, (2001), pp. 1–6. Google Scholar

  • [142] S. Bernèche and B. Roux: “Molecular dynamics of the kcsa k+ channel in a bilayer membrane”, Biophys. J., Vol 78, (2000), pp. 2900–2917. CrossrefGoogle Scholar

  • [143] Y. Zhou, J.H. Morais-Cabral, A. Kaufman and R. MacKinnon: “Chemistry of ion coordination and hydration revealed by a K+ channel-fab complex at 2.0 A resolution”, Nature, Vol. 414, (2001), pp. 43–48. Google Scholar

  • [144] M. LeMasurier, L. Heginbotham and C. Miller: “Kcsa: It’s a potassium channel”, J. Gen. Physiol., Vol 118, (2001), pp. 303–313. CrossrefGoogle Scholar

  • [145] J.H. Morais-Cabral, Y. Zhou and R. MacKinnon: “Energetic optimization of ion conduction by the k+ selectvity filter”, Nature, Vol. 414, (2001), pp. 37–42. Google Scholar

  • [146] L. Heginbotham, M. LeMasurier, L. Kolmakova-Partensky and C. Miller: “Single streptomyces lividans k+ channels: Functional asymmetries and sidedness of proton activation”, J. Gen. Physiol., Vol 114, (1999), pp. 551–559. CrossrefGoogle Scholar

  • [147] Y.F. Zhou and R. MacKinnon: “The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates”, J. Mol. Biol., Vol 333, (2003), pp. 965–975. CrossrefGoogle Scholar

  • [148] M. Zhou and R. MacKinnon: “A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution”, J. Molec. Biol., Vol 338, (2004), pp. 839–846. Google Scholar

  • [149] N. Shi, S. Ye, A. Alam, L.P. Chen and Y.X. Jiang: “Atomic structure of a Na+-and K+-conducting channel”, Nature, Vol. 440, (2006), pp. 570–574. Google Scholar

  • [150] S.Y. Noskov and B. Roux: “Importance of hydration and dynamics on the selectivity of the kcsa and nak channels”, J. Gen. Physio., Vol 129, (2007), pp. 135–143. CrossrefGoogle Scholar

  • [151] V.B. Luzhkov and J. Aqvist: “K+/Na+ selectivity of the kcsa potassium channel from microscopic free energy perturbation calculations”, Biochim. Biophys. Acta, Vol. 1548, (2001), pp. 194–202. Google Scholar

  • [152] V. Luzhkov and J. Aqvist: “Ions and blockers in potassium channels: Insights from free energy simulations”, Biochim Biophys Acta, Vol. 1747, (2005), pp. 109–120. Google Scholar

  • [153] S.Y. Noskov, S. Berneche and B. Roux: “Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands”, Nature, Vol. 431, (2004), pp. 830–834. Google Scholar

  • [154] S.Y. Noskov, S. Berneche and B. Roux: “The microscopic origin of ion selectivity in potassium channels”, Biophys. J., Vol 86, (2004), pp. 351a–352a. Google Scholar

  • [155] W. Treptow and M. Tarek: “K+ conduction in the selectivity filter of potassium channels is monitored by the charge distribution along their sequence”, Biophys. J., Vol 91, (2006), pp. L81–83. CrossrefGoogle Scholar

  • [156] M. Hellgren, L. Sandberg and O. Edholm: “A comparison between two prokaryotic potassium channels (Kirbac1.1 and Kcsa) in a molecular dynamics simulation study”, Biophys. Chem., Vol 120, (2006), pp. 1–9. CrossrefGoogle Scholar

  • [157] C. Domene, A. Grottesi, M.S.P. Sansom MSP: “Filter flexibility and distortion in a bacterial inward rectifier k+ channel: Simulation studies of KirBac1.1”, Biophys. J., Vol 87, (2004), pp. 256–267. CrossrefGoogle Scholar

  • [158] F. Khalili-Araghi, E. Tajkhorshid and K. Schulten: “Dynamics of k+ ion conduction through kv1.2”, Biophys. J., Vol 91, (2006), pp. L72–74. CrossrefGoogle Scholar

  • [159] S. Berneche and B.I. Roux: “A gate in the selectivity filter of potassium channels”, Structure, Vol. 13, (2005), pp. 591–600. CrossrefGoogle Scholar

  • [160] C.E. Capener, H.J. Kim, Y. Arinaminpathy and M.S.P. Sansom: “Ion channels: Structural bioinformatics and modelling”, Hum. Mol. Genet., Vol 11, (2002), pp. 2425–2433. CrossrefGoogle Scholar

  • [161] C.E. Capener and M.S.P. Sansom: “MD simulations of a K channel model-sensitivity to changes in ions, waters and membrane environment”J. Phys. Chem. B, Vol. 106, (2002), pp. 4543–4551. CrossrefGoogle Scholar

  • [162] K.M. Ranatunga, R.J. Law, G.R. Smith and M.S.P. Sansom: “Electrostatics studies and molecular dynamics simulations of a homology model of the shaker k+ channel pore”, Eur. Biophys. J. Biophy., Vol 30, (2001), pp. 295–303. CrossrefGoogle Scholar

  • [163] N.P. Mongan, A.K. Jones, G.R. Smith, M.S.P. Sansom and D.B. Sattelle: “Novel alpha 7-like nicotinic acetylcholine receptor subunits in the nematode caenorhabditis elegans”, Protein. Sci., Vol 11, (2002), pp. 1162–1171. Google Scholar

  • [164] A.G. Lee: “How lipids and proteins interact in a membrane: A molecular approach”, Mol. Biosystems, Vol. 1, (2005), pp. 203–212. CrossrefGoogle Scholar

  • [165] D.P. Tieleman, S.J. Marrink and H.J.C. Berendsen: “A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems”, BBA-Rev. Biomembranes, Vol. 1331, (1997), pp. 235–270. Google Scholar

  • [166] D.J. Tobias, K.C. Tu and M.L. Klein: “Atomic-scale molecular dynamics simulations of lipid membranes”, Curr. Opin. Colloid In., Vol 2, (1997), pp. 15–26. http://dx.doi.org/10.1016/S1359-0294(97)80004-0CrossrefGoogle Scholar

  • [167] B. Roux and T.B. Woolf: “Molecular dynamis of pf1 coat protein in a phospholipid bilayer”, In: K.M. Merz (Ed.): Biological membranes: A molecular perspective from computation and experiment, Birkhäuser, 1996, p. 587. Google Scholar

  • [168] T.B. Woolf and B. Roux: “Structure, energetics, and dynamics of lipid-protein interactions-a molecular-dynamics study of the gramicidin-a channel in a dmpc bilayer”, Proteins, Vol. 24, (1996), pp. 92–114. CrossrefGoogle Scholar

  • [169] K. Belohorcova, J.H. Davis, T.B. Woolf and B. Roux: “Structure and dynamics of an amphiphilic peptide in a lipid bilayer: A molecular dynamics study”, Biophys. J., Vol 73, (1997), pp. 3039–3055. CrossrefGoogle Scholar

  • [170] D.P. Tieleman, L.R. Forres, M.S.P. Sansom and H.J.C. Berendsen: “Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: Molecular dynamics simulations”, Biochemistry, Vol. 37, (1998), pp. 17554–17561. CrossrefGoogle Scholar

  • [171] T.B. Woolf: “Molecular dynamics of individual-helices of bacteriorhodopsin in dimyristoyl phosphatidylcholine. I. Structure and dynamics”, Biophys. J., Vol 73, (1997), pp. 2376–2392. CrossrefGoogle Scholar

  • [172] T.B. Woolf: “Molecular dynamics of individual-helices of bacteriorhodopsin in dimyristoyl phosphatidylcholine. Ii. Interaction energy analysis”, Biophys. J., Vol 74, (1998), pp. 115–131. CrossrefGoogle Scholar

  • [173] H.I. Petrache, A. Grossfield, K.R. MacKenzie, D.M. Engelman and T.B. Woolf: “Modulation of glycophorin a transmembrane helix interactions by lipid bilayers: Molecular dynamics calculations”, J. Molec. Biol., Vol 302, (2000), pp. 727–746. Google Scholar

  • [174] H.I. Petrache, D.M. Zuckerman, J.N. Sachs, J.A. Killian, R.E. Koeppe and T.B. Woolf: “Hydrophobic matching mechanism investigated by molecular dynamics simulations”, Langmuir, Vol. 18, (2002), pp. 1340–1351. CrossrefGoogle Scholar

  • [175] P.K. Fyfe, K.E. McAuley, A.W. Roszak, N.W. Isaacs, R.J. Cogdell and M.R. Jones: “Probing the interface between membrane proteins and membrane lipids by x-ray crystallography”, Trends Biochem. Sci., Vol 26, (2001), pp. 106–112. CrossrefGoogle Scholar

  • [176] A.H. O’Keeffe, J.M. East and A.G. Lee: “Selectivity in lipid binding to the bacterial outer membrane protein OmpF”, Biophys. J., Vol 79, (2000), pp. 2066–2074. Google Scholar

  • [177] C. Fernandez, C. Hilty, G. Wider and K. Wuthrich: “Lipid-protein interactions in dhpc micelles containing the integral membrane protein OmpX investigated by nmr spectroscopy”, P. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 13533–13537. CrossrefGoogle Scholar

  • [178] A.J. Costa, R.H. Crepeau, P.P. Borbat, M.T. Ge and J.H. Freed: “Lipid-gramicidin interactions: Dynamic structure of the boundary lipid by 2d-eldor”, Biophys. J., Vol 84, (2003), pp. 3364–3378. CrossrefGoogle Scholar

  • [179] M.R.R. de Planque, B.B. Bonev, J.A.A. Demmers, D.V. Greathouse, R.E. Koeppe, F. Separovic, A. Watts and J.A. Killian: “Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions”, Biochemistry, Vol. 42, (2003), pp. 5341–5348. Google Scholar

  • [180] J. Carney, J. East and A. Lee: “Penetration of lipid chains into transmembrane surfaces of membrane proteins: Studies with MscL”, Biophys J., Vol 92, (2007), pp. 3556–3563 CrossrefGoogle Scholar

  • [181] F.I. Valiyaveetil, Y. Zhou and R. MacKinnon: “Lipids in the structure, folding and function of the kcsa channel”, Biochem., Vol 41, (2002), pp. 10771–10777. CrossrefGoogle Scholar

  • [182] J.A.A. Demmers, A. van Dalen, B. de Kruijff, A.J.R. Heck and J.A. Killian: “Interaction of the k+ channel kcsa with membrane phospholipids as studied by esi mass spectrometry”, FEBS Lett., Vol 541, (2003), pp. 28–32. Google Scholar

  • [183] S.J. Alvis, I.M. Williamson, J.M. East and A.G. Lee: “Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel kcsa”, Biophys. J., Vol 85, (2003), pp. 3828–3838. http://dx.doi.org/10.1016/S0006-3495(03)74797-3CrossrefGoogle Scholar

  • [184] S.S. Deol, P.J. Bond, C. Domene and M.S.P. Sansom: “Lipid-protein interactions of integral membrane proteins: A comparative simulation study”, Biophys. J., Vol 87, (2004), pp. 3737–3749. CrossrefGoogle Scholar

  • [185] C. Domene, P.J. Bond, S.S. Deol and M.S.P. Sansom: “Lipid/protein interactions and the membrane/water interfacial region”, J. Am. Chem. Soc., Vol 125, (2003), pp. 14966–14967. CrossrefGoogle Scholar

  • [186] P.J. Bond and M.S.P. Sansom: “Membrane protein dynamics versus environment: Simulations of ompa in a micelle and in a bilayer”, J. Mol. Biol., Vol 329, (2003), pp. 1035–1053. Google Scholar

  • [187] W.M. Yau, P.J. Steinbach, W.C. Wimley, S.H. White and K. Gawrisch: “Indole and n-methyl indole orientation in lipid bilayers”, Biophys. J., Vol 74, (1998), p. A303. Google Scholar

  • [188] W.M. Yau, W.C. Wimley, K. Gawrisch and S.H. White: “The preference of tryptophan for membrane interfaces”, Biochemistry, Vol. 37, (1998), pp. 14713–14718. CrossrefGoogle Scholar

  • [189] S.S. Deol, C. Domene, P.J. Bond, M.S.P. Sansom: “Anionic phospholipid interactions with the potassium channel KcsA: Simulation studies”, Biophys. J., Vol 90, (2006), pp. 822–830. CrossrefGoogle Scholar

  • [190] C. Domene, S. Vemparala, M. Klein, C. Venien-Bryan and D. Doyle: “Role of aromatic localization in the gating process of a potassium channel”, Biophys. J., Vol 90, (2006), pp. L1–L3. Google Scholar

  • [191] S. Haider, S. Khalid, S.J. Tucker, F.M. Ashcroft and M.S. Sansom: “Molecular dynamics simulations of inwardly rectifying (kir) potassium channels: A comparative study”, Biochemistry, Vol. 46, (2007), pp. 3643–3652. CrossrefGoogle Scholar

  • [192] P. Moe and P. Blount: “Assessment of potential stimuli for mechano-dependent gating of mscl: Effects of pressure, tension, and lipid headgroups”, Biochemistry, Vol. 44, (2005), pp. 12239–12244. CrossrefGoogle Scholar

  • [193] A.M. Powl, J. Carney, P. Marius, J.M. East and A.G. Lee: “Lipid interactions with bacterial channels: Fluorescence studies”, Biochem. Soc. T., Vol 33, (2005), pp. 905–909. CrossrefGoogle Scholar

  • [194] A.M. Powl, J.M. East and A.G. Lee: “Lipid-protein interactions studied by introduction of a tryptophan residue: The mechanosensitive channel MscL”, Biochemistry, Vol. 42, (2003), pp. 14306–14317. CrossrefGoogle Scholar

  • [195] L.K. Tamm, J. Crane and V. Kiessling: “Membrane fusion: A structural perspective on the interplay of lipids and proteins”, Curr. Opin. Struc. Biol., Vol 13, (2003), pp. 453–466. CrossrefGoogle Scholar

  • [196] M.S. Sansom, P.J. Bond, S.S. Deol, A. Grottesi, S. Haider and Z.A. Sands: “Molecular simulations and lipid-protein interactions: Potassium channels and other membrane proteins”, Biochem. Soc. T., Vol 33, (2005), pp. 916–920. CrossrefGoogle Scholar

  • [197] S.O. Nielsen, C.F. Lopez, G. Srinivas and M.L. Klein: “Coarse grain models and the computer simulation of soft materials”, J. Phys-Condens. Mat., Vol 16, (2004), pp. R481–R512. Google Scholar

  • [198] L. Saiz and M.L. Klein: “Computer simulation studies of model biological membranes”, Accounts of Chem. Res., Vol 35, (2002), pp. 482–489. CrossrefGoogle Scholar

  • [199] L. Vigh, Z. Torok, G. Balogh, A. Glatz, S. Piotto and I. Horvath: “Membraneregulated stress response: A theoretical and practical approach”, Adv. Exp. Med. Biol., Vol 594, (2007), pp. 114–131. http://dx.doi.org/10.1007/978-0-387-39975-1_11CrossrefGoogle Scholar

About the article

Published Online: 2007-05-20

Published in Print: 2007-09-01


Citation Information: Open Chemistry, Volume 5, Issue 3, Pages 635–671, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-007-0028-6.

Export Citation

© 2007 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Antonino Laudani, Salvatore Coco, and Francesco Riganti Fulginei
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 2013, Volume 32, Number 6, Page 1845
[3]
M. Sajadi, A. Lohrasebi, and H. Rafii-Tabar
Molecular Simulation, 2014, Volume 40, Number 5, Page 399
[4]
K. V. Shaitan, O. S. Sokolova, A. K. Shaitan, M. A. Kasimova, V. N. Novoseletskii, and M. P. Kirpichnikov
Moscow University Biological Sciences Bulletin, 2013, Volume 68, Number 1, Page 8
[5]
Christopher Maffeo, Swati Bhattacharya, Jejoong Yoo, David Wells, and Aleksei Aksimentiev
Chemical Reviews, 2012, Volume 112, Number 12, Page 6250
[6]
Turgut Baştuğ and Serdar Kuyucak
Biophysical Journal, 2011, Volume 100, Number 3, Page 629
[7]
Turgut Baştuğ and Serdar Kuyucak
Biophysical Journal, 2009, Volume 96, Number 10, Page 4006
[8]
Alisher Kariev and Michael E. Green
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009, Volume 1788, Number 5, Page 1188
[9]
Tomasz Róg, Marta Pasenkiewicz-Gierula, Ilpo Vattulainen, and Mikko Karttunen
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009, Volume 1788, Number 1, Page 97

Comments (0)

Please log in or register to comment.
Log in