Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Sol-gel bioactive glass-ceramics Part II: Glass-ceramics in the CaO-SiO2-P2O5-MgO system

Lachezar Radev / Vladimir Hristov / Irena Michailova / Bisserka Samuneva
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0014-2

Abstract

Ceramics, with basic composition based on the CaO-SiO2-P2O5-MgO system with different Ca+ Mg/P+Si molar ratio (R), were prepared via polystep sol-gel technique. The structure of the obtained ceramic materials has been studied by XRD, FTIR spectroscopy, and SEM. X-ray diffraction showed the presence of akermanite and HA for the sample with R = 1.68 and Mg substituted β-TCP and silicocarnotite for the sample with R = 2.16, after thermal treatment at 1200°C/2 h. The obtained results are in good agreement with FTIR. In vitro test for bioactivity in static condition proved that the carbonate containing hydroxyapatite (CO3HA) can be formed on the surface of the synthesized samples. CO3HA consisted of both A- and B-type CO 32− ions. SEM micrographs depicted different forms of HA particles, precipitated on the surface after soaking in 1.5 simulated body fluid (SBF).

Keywords: Sol-gel; Bioceramics; In vitro bioactivity

  • [1] L.L. Hench, et al., J. Biomed. Mater. Res. 2, 117 (1972) Google Scholar

  • [2] T. Kokubo, et al., J. Biomed. Mater. Res. 24, 331 (1990) http://dx.doi.org/10.1002/jbm.820240306CrossrefGoogle Scholar

  • [3] A. Oyane, et al., J. Biomed. Mater. Res. 65A, 188 (2003) http://dx.doi.org/10.1002/jbm.a.10482CrossrefGoogle Scholar

  • [4] C. Ohtsuki, T. Kokubo, T. Yamamuro, J. Non-Cryst. Solids 143, 84 (1992) http://dx.doi.org/10.1016/S0022-3093(05)80556-3CrossrefGoogle Scholar

  • [5] M. Vallet-Regi, et al., Chem. Mater. 17, 1874 (2005) http://dx.doi.org/10.1021/cm047956jCrossrefGoogle Scholar

  • [6] A. Ramila, F. Balas, M. Vallet-Regi, Chem. Mater. 14, 542 (2002) http://dx.doi.org/10.1021/cm0110876CrossrefGoogle Scholar

  • [7] D. Arcos, J. Pena, M. Vallet-Regi, Chem. Mater. 15, 4132 (2003) http://dx.doi.org/10.1021/cm031074nCrossrefGoogle Scholar

  • [8] D. Arcos, D.C. Greenspan, M. Vallet-Regi, Chem. Mater. 14, 1515 (2002) http://dx.doi.org/10.1021/cm011119pCrossrefGoogle Scholar

  • [9] J. Perez-Pariente, F. Balas, M. Vallet-Regi, Chem. Mater. 12, 750 (2000) http://dx.doi.org/10.1021/cm9911114CrossrefGoogle Scholar

  • [10] M. Vallet-Regi, C.V. Ragel, A.J. Salinas, Eur. J. Inorg. Chem. 1029 (2003) Google Scholar

  • [11] T. Kokubo, Biomaterials 12, 155 (1991) http://dx.doi.org/10.1016/0142-9612(91)90194-FCrossrefGoogle Scholar

  • [12] S.B. Cho, et al., Biomaterials 18, 1479 (1997) http://dx.doi.org/10.1016/S0142-9612(97)00084-7CrossrefGoogle Scholar

  • [13] J. Shyu, J. Wu, J. Mater. Sci. 29, 3167 (1994) http://dx.doi.org/10.1007/BF00356658CrossrefGoogle Scholar

  • [14] A. Balamurugan, et al., J. Biomed. Mater. Res. Part B: Appl. Biomater. 83B, 546 (2007) http://dx.doi.org/10.1002/jbm.b.30827CrossrefGoogle Scholar

  • [15] D.-M. Liu, Material Chemistry and Physics 36, 294 (1994) http://dx.doi.org/10.1016/0254-0584(94)90045-0CrossrefGoogle Scholar

  • [16] S. Agathopoulos, et al., J. Non-Cryst. Solids 352, 322 (2006) http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.003CrossrefGoogle Scholar

  • [17] B. Yu, K. Liang, S. Gu, Ceramics International 29, 695 (2003) http://dx.doi.org/10.1016/S0272-8842(02)00219-5CrossrefGoogle Scholar

  • [18] P. Alizadeh, B.E. Yekta, T. Javadi, J. Eur. Ceram. Soc. 28, 1569 (2008) http://dx.doi.org/10.1016/j.jeurceramsoc.2007.10.007CrossrefGoogle Scholar

  • [19] P. Alizadeh, B. Eftekhary, A. Gervei, J. Eur. Ceram. Soc. 24, 3529 (2004) http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.028CrossrefGoogle Scholar

  • [20] H-L. Ren, et al., Chem. Phys. Lett. 292, 317 (1998) http://dx.doi.org/10.1016/S0009-2614(98)00676-9CrossrefGoogle Scholar

  • [21] R.G. Hill, M. Patel, D.J. Wood, In: W. Bonfield, G.W. Castings, K.E. Tanner (Eds), Bioceremics, (Buttrerworth-Heinemann, London, 1991) 79 Google Scholar

  • [22] R. Hill, D. Wood, J. Mater. Sci: Mater. Med. 6, 311 (1995) http://dx.doi.org/10.1007/BF00120298CrossrefGoogle Scholar

  • [23] A. Cliford, R. Hill, J. Non.-Cryst. Solids 196, 346 (1996) http://dx.doi.org/10.1016/0022-3093(95)00611-7CrossrefGoogle Scholar

  • [24] B. Samuneva, et al., J. Sol-Gel Sci. Techn. 13, 255 (1998) http://dx.doi.org/10.1023/A:1008647404796CrossrefGoogle Scholar

  • [25] B. Samuneva, et al., J. Sol-Gel Sci. Techn. 26, 1203 (2003) http://dx.doi.org/10.1023/A:1020716404034CrossrefGoogle Scholar

  • [26] B. Samuneva, et al., J. Sol-Gel Sci. Techn. 26, 273 (2003) http://dx.doi.org/10.1023/A:1020767603299CrossrefGoogle Scholar

  • [27] V. Hristov, et al., In: E. Balabanova, I. Dragieva (Eds), Proceedings of the Eight Workshop “Nanosrtuctured Materials Application and Inovation Transfer”, Nanoscience & Nanotechnology, 20–22 Nov., Sofia, Bulgaria, (Heron Press Science Series, Sofia, 2007) 235 Google Scholar

  • [28] L. Guo, M. Huang, X. Zhang, J. Mater. Sci.: Mater. Med. 14, 817 (2003) http://dx.doi.org/10.1023/A:1025048724330CrossrefGoogle Scholar

  • [29] S. Kannan, et al., J. Am. Ceram. Soc. 89(9), 2757 (2006) CrossrefGoogle Scholar

  • [30] A. Martines, I. Izquierdo-Barba, M. Vallet-Regi, Chem. Mater. 12, 3080 (2000) http://dx.doi.org/10.1021/cm001107oCrossrefGoogle Scholar

  • [31] P. McMillan, American Mineralogist 69, 622 (1984) Google Scholar

  • [32] P. McMillan, American Mineralogist 69, 645 (1984) Google Scholar

  • [33] S.R. Federman, et al., 17 CECIMat, Congresso Brasiliero de Engenharia e Clencia dos Materials, Brasil (2006) Google Scholar

  • [34] J. Roman, et al., Biomaterials 22, 2013 (2001) http://dx.doi.org/10.1016/S0142-9612(00)00387-2CrossrefGoogle Scholar

  • [35] I. Rehman, W. Bonfield, J. Mater. Sci.: Mater. Med. 8, 1 (1997) http://dx.doi.org/10.1023/A:1018570213546CrossrefGoogle Scholar

  • [36] I.R. Gibson, et al., J. Mater. Sci.: Mater. Med. 12, 799 (2000) http://dx.doi.org/10.1023/A:1008905613182CrossrefGoogle Scholar

  • [37] P.N. de Aza, et al., Chem. Mater. 9, 916 (1997) http://dx.doi.org/10.1021/cm9604266CrossrefGoogle Scholar

  • [38] P.N. de Aza, et al., Chem. Mater. 9, 912 (1997) http://dx.doi.org/10.1021/cm960425dCrossrefGoogle Scholar

  • [39] A.M. Hofmeister, E. Keppel, A.K. Speck, Mon. Not. R. Astron. Soc. 345, 16 (2003) http://dx.doi.org/10.1046/j.1365-8711.2003.06899.xCrossrefGoogle Scholar

  • [40] I. de Lima, A.M. Costa, I.N. Bastos, Mater. Res. 9, 1 (2006) Google Scholar

  • [41] Zh. Yang, et al., J. Mater. Chem. 15, 1807 (2005) http://dx.doi.org/10.1039/b418015cCrossrefGoogle Scholar

  • [42] M.P. Mahabole, et al., Bull. Mater. Sci. 28, 535 (2005) http://dx.doi.org/10.1007/BF02706339CrossrefGoogle Scholar

  • [43] D.E. Smeulders, M.A. Wilson, L. Amstrong, Ind. Eng. Chem. Ress. 40, (2001) Google Scholar

  • [44] G.A. Stanciu, et al., J. Biomed. & Pharmac. Eng. 1, 34 (2007) Google Scholar

  • [45] J. Ou, et al., Biomed. Mater. 3, 1 (2008) http://dx.doi.org/10.1088/1748-6041/3/1/015015CrossrefGoogle Scholar

  • [46] H. Lin, et al., J. Ceram. Soc. Jpn. 104, 291 (1996) CrossrefGoogle Scholar

  • [47] N. Hijon, et al., Chem. Mater. 16, 1451 (2004) http://dx.doi.org/10.1021/cm031164sCrossrefGoogle Scholar

  • [48] I. Hofmann, et al., J. Am. Ceram. Soc. 90, 821 (2007) http://dx.doi.org/10.1111/j.1551-2916.2007.01500.xCrossrefGoogle Scholar

  • [49] N. Pleshko, A. Boskey, R. Mendelsohn, Biophys. J. 60, 786 (1991) http://dx.doi.org/10.1016/S0006-3495(91)82113-0CrossrefGoogle Scholar

  • [50] A. Balamurugan, et al., Ceramics-Silikaty 50, 27 (2006) Google Scholar

  • [51] Y. Lee, et al., J. Mater. Sci. 42, 7843 (2007) http://dx.doi.org/10.1007/s10853-007-1629-3CrossrefGoogle Scholar

  • [52] X. Chen, et al., J. Mater. Sci.: Mater. Med. 19, 1257 (2008) http://dx.doi.org/10.1007/s10856-007-3233-0CrossrefGoogle Scholar

  • [53] S. Ni, J. Chang, L. Chou, J. Mater. Sci: Mater. Med. 19, 359 (2008) http://dx.doi.org/10.1007/s10856-007-3186-3CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 322–327, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0014-2.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bapi Sarker, Wei Li, Kai Zheng, Rainer Detsch, and Aldo R. Boccaccini
ACS Biomaterials Science & Engineering, 2016, Volume 2, Number 12, Page 2240
[2]
M. Araújo, M. Miola, A. Venturello, G. Baldi, J. Perez, and E. Verné
Biomedical glasses, 2015, Volume 1, Number 1
[3]
Mani Diba, Ourania-Menti Goudouri, Felipe Tapia, and Aldo R. Boccaccini
Current Opinion in Solid State and Materials Science, 2014, Volume 18, Number 3, Page 147
[4]
Valentina Medri, Elettra Papa, and Elena Landi
Materials Letters, 2013, Volume 106, Page 377
[5]
Nasser Mostafa, Abdallah Shaltout, Lachezar Radev, and Hassan Hassan
Open Chemistry, 2013, Volume 11, Number 2
[6]
V B BHATKAR and N V BHATKAR
Bulletin of Materials Science, 2011, Volume 34, Number 6, Page 1281
[7]
S.M. Mirhadi, F. Tavangarian, and R. Emadi
Materials Science and Engineering: C, 2012, Volume 32, Number 2, Page 133
[8]
Lachezar Radev, Maria Fernandes, Isabel Salvado, and Daniela Kovacheva
Open Chemistry, 2009, Volume 7, Number 4

Comments (0)

Please log in or register to comment.
Log in