Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Synthesis of lead-based 1212 and 3212 superconductors by an aqueous sol-gel method

Giedre Nenartaviciene / Ramunas Skaudzius / Rimantas Raudonis / Aivaras Kareiva
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0025-z

Abstract

The aqueous sol-gel synthesis technique for the preparation of (Pb,Sr)Sr2(Y,Ca)Cu2O7±x (Pb-1212) and (Pb2,Cu)Sr2(Y,Ca)Cu2O8±x (Pb-3212) superconductors using two different complexing agents, namely 1,2-ethanediol and tartaric acid was studied. The phase transformations, composition and micro-structural features in the polycrystalline samples were studied by powder X-ray diffraction analysis (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis of the ceramic samples obtained by calcination of Pb-Sr-Y-Ca-Cu-O acetate-glycolate precursor gels in air, for 10 hours at 800°C and at 825°C, showed the presence of homogeneous Pb-1212 and Pb-3212 crystallites as major phases. The XRD patterns of the ceramics obtained from Pb-Sr-Y-Ca-Cu-O acetate-tartrate precursor gels, however, showed multiphasic character. The critical temperature of superconductivity (TC (onset)) observed by resistivity measurements were found to be 91 K and 75 K for Pb-1212 and Pb-3212 samples, respectively.

Keywords: Ceramics; Superconducting materials; Chemical synthesis; Sol-gel growth

  • [1] G.J. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986) http://dx.doi.org/10.1007/BF01303701CrossrefGoogle Scholar

  • [2] D. Haught, J. Daley, P. Bakke, B. Marchionini, Int. J. Appl. Ceram. Technol. 4, 197 (2007) http://dx.doi.org/10.1111/j.1744-7402.2007.02133.xCrossrefGoogle Scholar

  • [3] H.C. Freyhardt, Int. J. Appl. Ceram. Technol. 4, 203 (2007) http://dx.doi.org/10.1111/j.1744-7402.2007.02134.xCrossrefGoogle Scholar

  • [4] M. Park, Y.-S. Jo, K.-S. Ryu, Int. J. Appl. Ceram. Technol. 4, 217 (2007) http://dx.doi.org/10.1111/j.1744-7402.2007.02135.xCrossrefGoogle Scholar

  • [5] M. Murakami, Int. J. Appl. Ceram. Technol. 4, 225 (2007) http://dx.doi.org/10.1111/j.1744-7402.2007.02136.xCrossrefGoogle Scholar

  • [6] P.N. Barnes, Int. J. Appl. Ceram. Technol. 4, 242 (2007) http://dx.doi.org/10.1111/j.1744-7402.2007.02137.xCrossrefGoogle Scholar

  • [7] R.J. Cava et al., Nature 336, 211 (1988) http://dx.doi.org/10.1038/336211a0CrossrefGoogle Scholar

  • [8] J.-E. Jørgensen, N.H. Andersen, Physica C 235-240, 877 (1994) http://dx.doi.org/10.1016/0921-4534(94)91663-2CrossrefGoogle Scholar

  • [9] M.A. Subramanian et al., Physica C 157, 124 (1989) http://dx.doi.org/10.1016/0921-4534(89)90477-2CrossrefGoogle Scholar

  • [10] J.Y. Lee, J.S. Swinnea, H. Steinfink, J. Mater. Res. 4, 763 (1989) http://dx.doi.org/10.1557/JMR.1989.0763CrossrefGoogle Scholar

  • [11] H.K. Lee, Physica C 308, 289 (1998) http://dx.doi.org/10.1016/S0921-4534(98)00575-9CrossrefGoogle Scholar

  • [12] T. Rouillon, M. Hervieu, B. Domenges, B. Raveau, J. Solid State Chem. 103, 63 (1993) http://dx.doi.org/10.1006/jssc.1993.1079CrossrefGoogle Scholar

  • [13] J.S. Xue, M. Reedyk, J.E. Greedan, T. Timusk, J. Solid State Chem. 102, 492 (1993) http://dx.doi.org/10.1006/jssc.1993.1061CrossrefGoogle Scholar

  • [14] J.-E. Jørgensen, N.H. Andersen, Physica C 218, 13 (1993) Google Scholar

  • [15] A. Maignan, D. Groult, R.S. Liu, T. Rouillon, P. Daniel, C. Michel, M. Hervieu, B. Raveau, J. Solid State Chem. 102, 31 (1993) http://dx.doi.org/10.1006/jssc.1993.1005CrossrefGoogle Scholar

  • [16] M. Hechtl, J. Bernhard, K.F. Renk, Supercond. Sci. Technol. 7, 407 (1994) http://dx.doi.org/10.1088/0953-2048/7/6/013CrossrefGoogle Scholar

  • [17] K.R. Pedersen, J.-E. Jørgensen, Physica C 264, 185 (1996) http://dx.doi.org/10.1016/0921-4534(96)00263-8CrossrefGoogle Scholar

  • [18] J. Linden, M. Lippmaa, T. Karlemo, M. Karppinen, L. Niinistö, Supercond. Sci. Technol. 9, 399 (1996) http://dx.doi.org/10.1088/0953-2048/9/5/011CrossrefGoogle Scholar

  • [19] M.H. Iversen, J.-E. Jørgensen, N.H. Andersen, Physica C 294, 169 (1998) http://dx.doi.org/10.1016/S0921-4534(97)01764-4CrossrefGoogle Scholar

  • [20] H.K. Lee, J. Korean Phys. Soc. 36, 384 (2000) Google Scholar

  • [21] H.K. Lee, J.R. Park, Y.I. Kim, J. Korean Phys. Soc. 38, 739 (2001) Google Scholar

  • [22] H. Sasakura, K. Yoshida, K. Tagaya, S. Tsukui, M. Adachi, T. Oka, R. Oshima, Physica C 356, 212 (2001) http://dx.doi.org/10.1016/S0921-4534(01)00162-9CrossrefGoogle Scholar

  • [23] J. Livage, M. Henry, C. Sanchez, Progr. Solid State Chem. 18, 259 (1988) http://dx.doi.org/10.1016/0079-6786(88)90005-2CrossrefGoogle Scholar

  • [24] C.J. Brinker, G.W. Scherrer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990) Google Scholar

  • [25] B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004) http://dx.doi.org/10.1021/cr030027bCrossrefGoogle Scholar

  • [26] A. Katelnikovas, J. Barkauskas, F. Ivanauskas, A. Beganskiene, A. Kareiva, J. Sol-Gel Sci. Techn. 41, 193 (2007) http://dx.doi.org/10.1007/s10971-006-9002-6CrossrefGoogle Scholar

  • [27] A. Kareiva, M. Karppinen, L. Niinisto, J. Mater. Chem. 4, 1267 (1994) http://dx.doi.org/10.1039/jm9940401267CrossrefGoogle Scholar

  • [28] A. Baranauskas, D. Jasaitis, A. Kareiva, R. Haberkorn, H.P. Beck, J. Eur. Ceram. Soc. 21, 399 (2001) http://dx.doi.org/10.1016/S0955-2219(00)00206-5CrossrefGoogle Scholar

  • [29] S. Mathur, H. Shen, N. Lecerf, M. H. Jilavi, V. Cauniene, J.-E. Jørgensen, A. Kareiva, J. Sol-Gel Sci. Technol. 24, 57 (2002) http://dx.doi.org/10.1023/A:1015113616733CrossrefGoogle Scholar

  • [30] A. Kareiva, I. Bryntse, M. Karppinen, L. Niinisto, J. Solid State Chem. 121, 356 (1996) http://dx.doi.org/10.1006/jssc.1996.0048CrossrefGoogle Scholar

  • [31] A. Zalga, J. Reklaitis, E. Norkus, A. Beganskiene, A. Kareiva, Chem. Phys. 327, 220 (2006) http://dx.doi.org/10.1016/j.chemphys.2006.04.007CrossrefGoogle Scholar

  • [32] R. Mahesh, R. Nagarajan, C.N.R. Rao, J. Solid State Chem. 96, 2 (1992) http://dx.doi.org/10.1016/S0022-4596(05)80290-7CrossrefGoogle Scholar

  • [33] Y. Liu, Z.-F. Zhang, B. King, J. Halloran, R.M. Laine, J. Am. Ceram. Soc. 79, 385 (1996) http://dx.doi.org/10.1111/j.1151-2916.1996.tb08133.xCrossrefGoogle Scholar

  • [34] P. Vaqueiro, M.A. Lopez-Quintela, J. Mater. Chem. 8, 161 (1998) http://dx.doi.org/10.1039/a705635dCrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 362–368, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0025-z.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
L. Amirouche, A. Amira, A. Saoudel, Y. Boudjadja, N. Mahamdioua, A. Varilci, S. P. Altintas, and C. Terzioglu
Journal of Superconductivity and Novel Magnetism, 2013, Volume 26, Number 4, Page 867

Comments (0)

Please log in or register to comment.
Log in