Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

The effects of copper ions on the catalytical degradation of azo dye acid chrome blue K

Xiang-Hu Liu
  • State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing Lin
  • State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hong-Wen Gao
  • State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ya-Lei Zhang
  • State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0029-8

Abstract

The effects of Cu2+ on the catalytical degradation of acid chrome blue K (ACBK) in UV-TiO2 and H2O2 processes were studied. In these two processes, Cu2+ markedly depressed the catalytical degradation of ACBK by its interaction with ACBK. Through this interaction, the new complex Cu(ACBK)2 formed. The formation of this new complex was favorable to protect some groups in ACBK from the oxidation of reactive oxygen generated in UV-TiO2 and H2O2 processes, and consequently had suppressing effects on degradation of ACBK. In addition, Cu2+ also inhibited the degradation of ACBK in UV-TiO2 process by influencing the adsorption of ACBK on the surface of TiO2 particles.

Keywords: Copper ions; Acid chrome blue K; Photocatalytical degradation

  • [1] G. Tchobanoglous, F.L. Burton, Wastewater Engineering: Treatment, Disposal and Reuse, 3rd edition (McGraw-Hill, New York, 1991) Google Scholar

  • [2] R. Ganesh, G.D. Boardman, D. Michelson, Water Res. 28, 1367 (1994) http://dx.doi.org/10.1016/0043-1354(94)90303-4CrossrefGoogle Scholar

  • [3] E.J. Weber, R.L. Adams, Environ. Sci. Technol. 29, 1163 (1995) http://dx.doi.org/10.1021/es00005a005CrossrefGoogle Scholar

  • [4] E. Herrera, A. Lopez, G. Mascolo, P. Albrs, J. Kiwi, Water Res. 35, 750 (2001) http://dx.doi.org/10.1016/S0043-1354(00)00295-5CrossrefGoogle Scholar

  • [5] K.Q. Wu, Y.D. Xie, J.C. Zhao, H. Hidaka, J. Mol. Catal. A-Chem. 144, 77 (1999) http://dx.doi.org/10.1016/S1381-1169(98)00354-9CrossrefGoogle Scholar

  • [6] K.Q. Wu, T.Y. Zhang, J.C. Zhao, H. Hidaka, Chem. Lett. 8, 857 (1998) http://dx.doi.org/10.1246/cl.1998.857CrossrefGoogle Scholar

  • [7] F. Herrera, J. Kiwi, A. Lopez, V. Nadtochenko, Environ. Sci. Technol. 33, 3145 (1999) http://dx.doi.org/10.1021/es980995+CrossrefGoogle Scholar

  • [8] J. Bandara, J. Kiwi, New J. Chem. 23, 717 (1999) http://dx.doi.org/10.1039/a902425eCrossrefGoogle Scholar

  • [9] H. Kyung, J. Lee, W.Y. Choi, Environ. Sci. Technol. 39, 2376 (2005) http://dx.doi.org/10.1021/es0492788CrossrefGoogle Scholar

  • [10] C.C. Chen, X.Z. Li, W.H. Ma, J.C. Zhao, H. Hidaka, J. Phys. Chem. B. 106, 318 (2002) http://dx.doi.org/10.1021/jp0119025CrossrefGoogle Scholar

  • [11] G. Colon, M.C. Hidalgo, J.A. Navio, Langumir 17, 7174 (2001) http://dx.doi.org/10.1021/la010778dCrossrefGoogle Scholar

  • [12] R.A. Burns, J.C. Crittenden, D.W. Hand, V.H. Selzer, L.L. Sutter, S.R. Salman, J. Environ. Engin-ASCE 125, 77 (1999) http://dx.doi.org/10.1061/(ASCE)0733-9372(1999)125:1(77)CrossrefGoogle Scholar

  • [13] M.I. Litter, Appl. Catal. B-Environ. 23, 89 (1999) http://dx.doi.org/10.1016/S0926-3373(99)00069-7CrossrefGoogle Scholar

  • [14] Y.C. Tang, C. Hu, Y.Z. Wang, Envion. Chem. 22, 364 (2003) Google Scholar

  • [15] E.C. Butler, A.P. Davis, J. Photochem. Photobiol. A: Chem. 70, 273 (2000) http://dx.doi.org/10.1016/1010-6030(93)85053-BCrossrefGoogle Scholar

  • [16] K. Selvam, M. Murugannandham, I. Muthuvel, M. Swaminathan, Chem. Engin. J. 128, 51 (2007) http://dx.doi.org/10.1016/j.cej.2006.07.016CrossrefGoogle Scholar

  • [17] E. Pelizzetti, M. Borgarello, C. Minero, E. Pramauro, E. Borgarello, N. Serpone, Chemosphere 17, 499 (1988) http://dx.doi.org/10.1016/0045-6535(88)90025-2CrossrefGoogle Scholar

  • [18] H.W. Gao, S.Q. Xia, H.Y. Wang, H.F. Zhao, Water Res. 38, 1642 (2004) http://dx.doi.org/10.1016/j.watres.2003.11.030CrossrefGoogle Scholar

  • [19] C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 25, 494 (1991) http://dx.doi.org/10.1021/es00015a018CrossrefGoogle Scholar

  • [20] E. Vassileva, I. Proinova, K. Hadjiivanov, Analyst 121, 607 (1996) http://dx.doi.org/10.1039/an9962100607CrossrefGoogle Scholar

  • [21] M.S. Kim, K.M. Hong, J.G. Chung, Water Res. 37, 3524 (2003) http://dx.doi.org/10.1016/S0043-1354(03)00227-6CrossrefGoogle Scholar

  • [22] K.A. Hislop, J.R. Bolton, Environ. Sci. Technol. 33, 3119 (1999) http://dx.doi.org/10.1021/es9810134CrossrefGoogle Scholar

  • [23] S. Antonaraki, E. Androulaki, D. Dimotikali, A. Hiskia, E. Papaconstantinou, J. Photochem. Photobiol. A: Chem. 148, 191 (2002) http://dx.doi.org/10.1016/S1010-6030(02)00042-4CrossrefGoogle Scholar

  • [24] H.W. Gao, C.L. Wang, J.Y. Jia, Y.L. Zhang, Anal. Sci. 23, 655 (2007) http://dx.doi.org/10.2116/analsci.23.655CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 454–460, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0029-8.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pengfei Ji, Baozhu Tian, Feng Chen, and Jinlong Zhang
Environmental Technology, 2012, Volume 33, Number 4, Page 467

Comments (0)

Please log in or register to comment.
Log in