Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Surface enhanced raman scattering of aromatic thiols adsorbed on nanostructured gold surfaces

Mamdouh Abdelsalam
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0032-0

Abstract

In this paper we describe the use of a simple and versatile technique of templated electrodeposition through polystyrene sphere templates to produce nanostructured films of gold with regular submicron spherical holes arranged in a hexagonal close-packed structure. The templates were produced by self assembly of a monodispersed suspension of polystyrene spheres on gold substrates using capillary forces. The self assembly process was modified through the chemical modification of the gold substrate with cysteamine thiol. Films of gold were prepared by electrochemical deposition through the template. The electrochemical deposition charge and the current time curve were used to control the film height with a precision of approximately 10 nm. The colour of the nanostructured films changed as the film thickness was changed. Surface enhanced Raman Scattering spectra were recorded and used to identify very low concentrations of aromatic thiol molecules, 4-Nitrobenzenethiol (4-NBT) and 4-Aminobenzenethiol (4-ABT), adsorbed on the surface of the nanostructured gold substrates.

Keywords: Templated electrodeposition; Nanostructured gold; SERS, 4-Nitrobenzenethiol; 4-Aminobenzenethiol

  • [1] C.B. Murray, C.R. Kagan, M.G. Bawendi, Science 270, 1335 (1995) http://dx.doi.org/10.1126/science.270.5240.1335CrossrefGoogle Scholar

  • [2] M. Zhao, L. Sun, R.M. Crooks, J. Am. Chem. Soc. 120, 4877 (1998) http://dx.doi.org/10.1021/ja980438nCrossrefGoogle Scholar

  • [3] M. Himmelhaus, H. Takei, Phys. Chem. Chem. Phys 4, 496 (2002) http://dx.doi.org/10.1039/b108631fCrossrefGoogle Scholar

  • [4] P. Pieranski, Contemp. Phys. 24, 25 (1983) http://dx.doi.org/10.1080/00107518308227471CrossrefGoogle Scholar

  • [5] K.E. Davis, W.B. Russel, W.J. Glantschnig, J. Chem. Soc., Faraday Trans. 87, 411 (1991) http://dx.doi.org/10.1039/ft9918700411CrossrefGoogle Scholar

  • [6] H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J.S. Moya, J. Requena, A. Mifsud, V. Fornes, Adv. Mater. 10, 480 (1998) http://dx.doi.org/10.1002/(SICI)1521-4095(199804)10:6<480::AID-ADMA480>3.0.CO;2-YCrossrefGoogle Scholar

  • [7] N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Nature 361, 26 (1993) http://dx.doi.org/10.1038/361026a0CrossrefGoogle Scholar

  • [8] O.D. Velev, P.M. Tessier, A.M. Lenhoff, E.W. Kaler, Nature 401, 548 (1999) http://dx.doi.org/10.1038/44065CrossrefGoogle Scholar

  • [9] K. Nagayama, Colloids Surf. 109, 363 (1996) http://dx.doi.org/10.1016/0927-7757(95)03467-6CrossrefGoogle Scholar

  • [10] P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Chem. Mater. 11, 2132 (1999) http://dx.doi.org/10.1021/cm990080+CrossrefGoogle Scholar

  • [11] Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001) http://dx.doi.org/10.1038/35104529CrossrefGoogle Scholar

  • [12] P.N. Bartlett, J.J. Baumberg, P.R. Birkin, M.A. Ghanem, M.C. Netti, Chem. Mater. 14, 2199 (2002) http://dx.doi.org/10.1021/cm011272jCrossrefGoogle Scholar

  • [13] P.N. Bartlett, J.J. Baumberg, S. Coyle, M.E. Abdelsalam, Farad. Discuss. 125, 117 (2004) http://dx.doi.org/10.1039/b304116fCrossrefGoogle Scholar

  • [14] B.T. Holland, C.F. Blanford, T. Do, A. Stein, Science 281, 538 (1998) http://dx.doi.org/10.1126/science.281.5376.538CrossrefGoogle Scholar

  • [15] J.E.G.J. Wijnhoven, W.L. Vos, Science 281, 802 (1998) http://dx.doi.org/10.1126/science.281.5378.802CrossrefGoogle Scholar

  • [16] H. Yan, C.F. Blanford, W.H. Smyrl, A. Stein, Chem. Commun. 1477 (2000) CrossrefGoogle Scholar

  • [17] P. Jiang, K.S. Hawang, D.M. Mittleman, J.F. Bertone, V.L. Colvin, J. Am. Chem. Soc. 121, 11630 (1999) http://dx.doi.org/10.1021/ja9903476CrossrefGoogle Scholar

  • [18] S.A. Johnson, P.J. Ollivier, T.E. Mallouk, Science 283, 963 (1999) http://dx.doi.org/10.1126/science.283.5404.963CrossrefGoogle Scholar

  • [19] P. Hoyer, Langmuir 14, 1411 (1996) http://dx.doi.org/10.1021/la9507803CrossrefGoogle Scholar

  • [20] I. Moriguchi, H. Maeda, Y. Teraoka, S. Kagawa, Chem. Mater. 9, 1050 (1997) http://dx.doi.org/10.1021/cm970023lCrossrefGoogle Scholar

  • [21] R.W.J. Scott, S.M. Yang, G. Chabanis, N. Coombs, D.E. Williams, G.A. Ozin, Adv. Mater. 13, 1468 (2001) http://dx.doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-OCrossrefGoogle Scholar

  • [22] S.H. Park, Y. Xia, Chem. Mater. 10, 1745 (1998) http://dx.doi.org/10.1021/cm9801993CrossrefGoogle Scholar

  • [23] S.H. Park, Y. Xia, Adv. Mater. 10, 1045 (1998) http://dx.doi.org/10.1002/(SICI)1521-4095(199809)10:13<1045::AID-ADMA1045>3.0.CO;2-2CrossrefGoogle Scholar

  • [24] S. Cintra, M.E. Abdelsalam, P.N. Bartlett, J.J. Baumberg, T.A. Kelf, Y. Suguwara, A.E. Russell, Farad. Discuss. 132, 191 (2006) http://dx.doi.org/10.1039/b508847jCrossrefGoogle Scholar

  • [25] M.E. Abdelsalam, S. Mahajan, P.N. Bartlett, J.J. Baumberg, A.E. Russell, J. Am. Chem. Soc. 129, 7399 (2007) http://dx.doi.org/10.1021/ja071269mCrossrefGoogle Scholar

  • [26] S. Mahajan, M.E. Abdelsalam, Y. Suguwara, S. Cintra, A.E. Russell, J.J. Baumberg, P.N. Bartlett, Phys. Chem. Chem. Phys. 9, 104 (2007) http://dx.doi.org/10.1039/b611803hCrossrefGoogle Scholar

  • [27] L.A. Dick, A.D. Mcfarland, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 106, 853 (2002) http://dx.doi.org/10.1021/jp013638lCrossrefGoogle Scholar

  • [28] Z.Q. Tian, B. Ren, D.Y. Wu, J. Phys. Chem. B 106, 9463 (2002) http://dx.doi.org/10.1021/jp0257449CrossrefGoogle Scholar

  • [29] M.E. Abdelsalam, P.N. Bartlett, T.A. Kelf, J.J. Baumberg, Langmuir 21, 1753 (2005) http://dx.doi.org/10.1021/la047468qCrossrefGoogle Scholar

  • [30] G.W. Poehlein, R.H. Ottewill, J.W. Goodwin, Science and Technology of Polymer Colloids (Martinus Nijhoff Publishers, Boston, 1983) Google Scholar

  • [31] R. Szamocki, S. Reculusa, S. Ravaine, P.N. Bartlett, A. Kuhn, R. Hempelmann, Angew. Chem., Int. Ed. Engl. 45, 1317 (2006) http://dx.doi.org/10.1002/anie.200503292CrossrefGoogle Scholar

  • [32] J.J. Baumberg, T.A. Kelf, Y. Suguwara, S. Cintra, M.E. Abdelsalam, P.N. Bartlett, W.B. Russel, Nano Lett. 5, 2262 (2005) http://dx.doi.org/10.1021/nl051618fCrossrefGoogle Scholar

  • [33] B.O. Skadtchenko, R. Aroca, Spectrochimica Acta, Part A 57, 1009 (2001) http://dx.doi.org/10.1016/S1386-1425(00)00415-7CrossrefGoogle Scholar

  • [34] K.S. Shin, H.S. Lee, S.W. Joo, K. Kim, J. Phys. Chem. C 111, 15223 (2007) http://dx.doi.org/10.1021/jp073053cCrossrefGoogle Scholar

  • [35] J. Zheng, Y. Zhou, X. Li, Y. Ji, T. Lu, R. Gu, Langmuir 19, 632 (2003) http://dx.doi.org/10.1021/la011706pCrossrefGoogle Scholar

  • [36] T.A. Kelf, Y. Sugawara, J.J. Baumberg, M.E. Abdelsalam, P.N. Bartlett, Phys. Rev. Lett. 95, 116802 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.116802CrossrefGoogle Scholar

  • [37] W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003) http://dx.doi.org/10.1038/nature01937CrossrefGoogle Scholar

  • [38] T.A. Kelf, Y. Sugawara, R.M. Cole, J.J. Baumberg, M.E. Abdelsalam, S. Cintra, S. Mahajan, A.E. Russell, P.N. Bartlett, Phys. Rev. B 74, 245415 (2006) http://dx.doi.org/10.1103/PhysRevB.74.245415CrossrefGoogle Scholar

  • [39] M.E. Abdelsalam, P.N. Bartlett, J.J. Baumberg, S. Cintra, T.A. Kelf, A.E. Russell, Electrochem. Commun. 7, 740 (2005) http://dx.doi.org/10.1016/j.elecom.2005.04.028CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 446–453, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0032-0.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Boris N. Khlebtsov, Daniil N. Bratashov, and Nikolai G. Khlebtsov
The Journal of Physical Chemistry C, 2018
[2]
Xiulong Jin, Boris N. Khlebtsov, Vitaly A. Khanadeev, Nikolai G. Khlebtsov, and Jian Ye
ACS Applied Materials & Interfaces, 2017
[3]
Jeff Mirza, Isaac Martens, Martin Grüßer, Dan Bizzotto, Rolf Schuster, and Jacek Lipkowski
The Journal of Physical Chemistry C, 2016, Volume 120, Number 29, Page 16246
[4]
Da-Young Hong, Seong Kyu Kim, and Young-Uk Kwon
The Journal of Physical Chemistry C, 2015, Volume 119, Number 39, Page 22611
[5]
Marcia del R. Balaguera-Gelves, Oscar J. Perales-Pérez, Surinder P. Singh, José A. Jiménez, Joaquín A. Aparicio-Bolaños, and Samuel P. Hernández-Rivera
Materials Sciences and Applications, 2013, Volume 04, Number 01, Page 29
[6]
Xiaoqian Ren, Enzhong Tan, Xiufeng Lang, Tingting You, Li Jiang, Hongyan Zhang, Penggang Yin, and Lin Guo
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 34, Page 14196
[7]
Seongmin Hong and Xiao Li
Journal of Nanomaterials, 2013, Volume 2013, Page 1

Comments (0)

Please log in or register to comment.
Log in