Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 7, Issue 3


Volume 13 (2015)

Interaction of montmorillonite with phenothiazine dyes and pyronin in aqueous dispersions: A visible spectroscopy study

Adriana Czímerová / Alexander Čeklovský / Juraj Bujdák
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0035-x


Layer charge is one of the key parameters used for the characterisation of expandable clay minerals, smectites. It determines most significant properties of the material which are important from the industrial application point of view. This work is related to a novel method introduced to characterize the layer charge of smectites, based on using cationic organic dyes as molecular sensors. One xanthene and four phenothiazine cationic dyes were tested using reduced charge montmorillonites (RCMs) and compared with methylene blue, which has been used most frequently. The characterization of the charge was based on the formation of molecular assemblies (H- and J-aggregates) composed by dye cations, which were easily detectable using absorption spectroscopy in the UV/VIS spectrum. More detailed characterization of the spectra required calculations of second-derivative curves. For all of the reaction systems tested in this work, the molecular aggregation increased with the layer charge of RCMs. Slight to moderate differences in the formation of dye assemblies related to the differences in the molecular structures of the individual dye cations. For example, the molecular asymmetry of azure A brought about the formation of coexistent species of similar structures. The structure of the heteroaromatic skeleton affected the extent of the aggregation and spectral changes with time. The presence of reactive, non-substituted amino groups in thionine cations probably partially decomposed in the clay mineral colloids based on high-charge RCMs. Any of the tested dyes could be used as molecular sensors for empirical characterization of the layer charge of clays taking into account the differences mentioned above.

Keywords: Layered silicates; Dye molecules; Molecular aggregates; Adsorption; UV/VIS spectroscopy

  • [1] A.C.D. Newman, Chemistry of Clays Clay Minerals, Mineralogical Society (Monograph No. 6, New York, 1987) Google Scholar

  • [2] H. Van Olphen, An Introduction to Clay Colloid Chemistry, 2nd edition (Wiley — Interscience, New York, 1977) Google Scholar

  • [3] A.R. Mermut, Layer Charge Characteristics of 2:1 Silicate Clay Minerals, CMS Workshop Lectures Vol. 6 (The Clay Minerals Society, Boulder, Colorado, 1994) Google Scholar

  • [4] J. Cenens, R.A. Schoonheydt, Clays Clay Miner. 36, 214 (1988) http://dx.doi.org/10.1346/CCMN.1988.0360302CrossrefGoogle Scholar

  • [5] J. Bujdák, N. Iyi, T. Fujita, Clay Miner. 37, 121 (2002) http://dx.doi.org/10.1180/0009855023710022CrossrefGoogle Scholar

  • [6] L. Antonov, G. Gregor, V. Petrov, M. Kubista, J. Nygren, Talanta 49, 99 (1999) http://dx.doi.org/10.1016/S0039-9140(98)00348-8CrossrefGoogle Scholar

  • [7] J. Bujdák, P. Komadel, J. Phys. Chem. B. 101, 9065 (1997) http://dx.doi.org/10.1021/jp9718515CrossrefGoogle Scholar

  • [8] T. Kobayashi, J-aggregates (World Scientific, Singapore, 1996) Google Scholar

  • [9] A. Czímerová, L’. Jankoviě, J. Bujdák, J. Colloid Interface Sci. 274, 126 (2004) http://dx.doi.org/10.1016/j.jcis.2003.10.025CrossrefGoogle Scholar

  • [10] J. Bujdák, M. Janek, J. Madejová, P. Komadel, J. Chem. Soc., Faraday Trans. 94, 3487 (1998) http://dx.doi.org/10.1039/a805341cCrossrefGoogle Scholar

  • [11] J. Bujdák, Appl. Clay Sci. 34, 58 (2006) http://dx.doi.org/10.1016/j.clay.2006.02.011CrossrefGoogle Scholar

  • [12] H. Yao, M. Omizo, N. Kitamura, Chem. Commun. 35, 739 (2000) http://dx.doi.org/10.1039/b000548gCrossrefGoogle Scholar

  • [13] J. Bujdák, M. Janek, J. Madejová, P. Komadel, Clays Clay Miner. 49, 244 (2001) http://dx.doi.org/10.1346/CCMN.2001.0490307CrossrefGoogle Scholar

  • [14] K. Bergmann, C.T. O’Konski, J. Phys. Chem. 67, 2169 (1963) http://dx.doi.org/10.1021/j100804a048CrossrefGoogle Scholar

  • [15] B. Cicel, P. Komadel, In: J.E. Amonette, L.W. Zelazny (Eds.), Quantitative Methods in Soil Mineralogy (Soil Science Society of America, Madison, 1994) 114 Google Scholar

  • [16] P. Komadel, J. Madejová, J. Bujdák, Clays Clay Miner. 53, 313 (2005) http://dx.doi.org/10.1346/CCMN.2005.0530401CrossrefGoogle Scholar

  • [17] H. Mark, J. Workman, Spectroscopy 18, 1 (2003) Google Scholar

  • [18] J. Bujdák, V.M. Martínez, L.F. Arbeloa, N. Iyi, Langmuir 23, 1851 (2007) http://dx.doi.org/10.1021/la062437bCrossrefGoogle Scholar

  • [19] A. Czímerová, N. Iyi, J. Bujdák, J. Colloid Interface Sci. 320, 140 (2008) http://dx.doi.org/10.1016/j.jcis.2007.10.055CrossrefGoogle Scholar

  • [20] K.Y. Jacobs, R.A. Schoonheydt, J. Colloid Interface Sci. 220, 103 (1999) http://dx.doi.org/10.1006/jcis.1999.6513CrossrefGoogle Scholar

  • [21] S. Petit, D. Righi, J. Madejová, Appl. Clay Sci. 34, 22 (2006) http://dx.doi.org/10.1016/j.clay.2006.02.007CrossrefGoogle Scholar

  • [22] H. Bose, Ind. J. of Chemistry 26A, 652 (1987) Google Scholar

  • [23] S. Yariv, In: S. Yariv, H. Cross (Eds.), Organo-Clay Complexes and Interactions (Marcel Dekker Inc., New York, 2002) Google Scholar

  • [24] AJ. Bujdak, N. Iyi, T. Fujita, Colloids and Surfaces A: Physicochem. Eng. Aspects 207, 207 (2002) http://dx.doi.org/10.1016/S0927-7757(02)00094-8CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01

Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 343–353, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0035-x.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Eva Scholtzová, Jana Madejová, and Daniel Tunega
Vibrational Spectroscopy, 2014, Volume 74, Page 120
A. Tabak, M. Kaya, N. Yilmaz, K. Meral, Y. Onganer, B. Caglar, and O. Sungur
Journal of Molecular Structure, 2014, Volume 1059, Page 271
Y. Shaydyuk, S. Turrell, A. Moissette, M. Hureau, Y. Gomza, V. Klepko, and N. Lebovka
Journal of Molecular Structure, 2014, Volume 1056-1057, Page 1
Eva Scholtzová, Daniel Tunega, Jana Madejová, Helena Pálková, and Peter Komadel
Vibrational Spectroscopy, 2013, Volume 66, Page 123
Kadem Meral, Nuray Yılmaz, Mehmet Kaya, Ahmet Tabak, and Yavuz Onganer
Journal of Luminescence, 2011, Volume 131, Number 10, Page 2121

Comments (0)

Please log in or register to comment.
Log in