Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Studies on complex formation between curcumin and Hg(II) ion by spectrophotometric method: A new approach to overcome peak overlap

Ratanasuda Waranyoupalin / Sumpun Wongnawa / Malinee Wongnawa / Chaveng Pakawatchai / Pharkphoom Panichayupakaranant
  • Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Panit Sherdshoopongse
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0037-8

Abstract

Complex formation between curcumin and Hg(II) ion MeOH/H2O (1: 1 v/v) was investigated and monitored by the spectrophotometric method. The absorption peak of unreacted curcumin which was close and overlapped with that of the complex, was removed by calculation using Microsoft Excel, thereby, allowing determination of the stoichiometry of the complex by the mole-ratio and the Job’s continuous variation methods. Both methods indicated that a 1:1 complex of curcumin and Hg(II) was formed in solution. The formation constant of the 1:1 Hg(II) complex was obtained from two methods, the equilibrium concentration calculation and the linear plot of Benesi-Hildebrand equation, as log K = 4.44 ± 0.16 and 4.83 ± 0.02, respectively. The structure is proposed as a tetrahedral complex of Hg(II) with one curcumin and two chloride ions as ligands.

Keywords: Metal curcumin complexes; Mole-ratio method; Job’s method; Benesi-Hildebrand; Formation constant

  • [1] PDR for Herbal Medicines, 2nd edition (Medical Economics Company, Montvale, 2000) Google Scholar

  • [2] L. Baum, A. Ng, J. Alzheimers Dis. 6, 367 (2004) Google Scholar

  • [3] G.P. Lim, T. Chu, F. Yang, W. Beech, S.A. Frautschy, G.M. Cole, J. Neurosci. 21, 8370 (2001) Google Scholar

  • [4] Y. Jiao, J. Wilkinson IV, E.C. Pietsch, J.L. Buss, W. Wang, R. Planalp, F.M. Torti, S.V. Torti, Free Radical Biol. Med. 40, 1152 (2006) http://dx.doi.org/10.1016/j.freeradbiomed.2005.11.003CrossrefGoogle Scholar

  • [5] K. Thompson, K. Bohmerle, E. Polishchuk, C. Martins, P. Toleikis, J. Tse, V. Yuen, J.H. McNeill, C. Orvig, J. Inorg. Biochem. 98, 2063 (2004) http://dx.doi.org/10.1016/j.jinorgbio.2004.09.011CrossrefGoogle Scholar

  • [6] L. Shen, H.-Y. Zhang, H.-F. Ji, THEOCHEM 757, 199 (2005) http://dx.doi.org/10.1016/j.theochem.2005.05.016CrossrefGoogle Scholar

  • [7] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 4th edition (John Wiley and Sons, New York, 1980) Google Scholar

  • [8] M. Borsari, E. Ferrari, R. Grandi, M. Saladini, Inorg. Chim. Acta 328, 61 (2002) http://dx.doi.org/10.1016/S0020-1693(01)00687-9CrossrefGoogle Scholar

  • [9] I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, R.K. Banerjee, Cur. Sci. 87, 44 (2004) Google Scholar

  • [10] M. Bernabe-Pineda, M.T. Ramirez-Silva, M.A. Romero-Romo, E. Gonzalez-Vergara, A. Rojas-Hernandez, Spectrochim. Acta A 60, 1105 (2004) http://dx.doi.org/10.1016/S1386-1425(03)00344-5CrossrefGoogle Scholar

  • [11] A. Barik, B. Mishra, A. Kunwar, L. Shen, H. Mohan, R.M. Kadam, S. Dutta, H.-Y. Zhang, K.I. Priyadarsini, Free Radic. Biol. Med. 39, 811 (2005) http://dx.doi.org/10.1016/j.freeradbiomed.2005.05.005CrossrefGoogle Scholar

  • [12] A. Sundaryono, A. Nourmamode, C. Gardrat, A. Fritsch, A. Castellan, J. Mol. Struct. 649, 177 (2003) http://dx.doi.org/10.1016/S0022-2860(03)00050-4CrossrefGoogle Scholar

  • [13] K. Basavaiah, V.S. Charan, Science Asia 20, 359 (2002) http://dx.doi.org/10.2306/scienceasia1513-1874.2002.28.359CrossrefGoogle Scholar

  • [14] G. Yin, D. Xu, Z. Xu, Chem. Phys. Lett. 365, 232 (2002) http://dx.doi.org/10.1016/S0009-2614(02)01450-1CrossrefGoogle Scholar

  • [15] M. Kádár, A. Biró, K. Tóth, B. Vermes, P. Huszthy, Spectrochim. Acta A 62, 1032 (2005) http://dx.doi.org/10.1016/j.saa.2005.04.034CrossrefGoogle Scholar

  • [16] S.A. Mizyed, E. Al-Jarrah, D. Marji, M. Ashram, Spectrochim. Acta A 68, 1274 (2007) http://dx.doi.org/10.1016/j.saa.2007.02.004CrossrefGoogle Scholar

  • [17] G.D. Christian, J.E. O’Reilly, Ultraviolet and Visible Absorption Spectroscopy in Instrumental Analysis, 2nd edition (Allyn and Bacon, Boston, 1986) Google Scholar

  • [18] F. Zsila, Z. Bikádi, M. Simonyi, Tetrahedron: Asymmetry 14, 2433 (2003) http://dx.doi.org/10.1016/S0957-4166(03)00486-5CrossrefGoogle Scholar

  • [19] F. Zsila, Z. Bikádi, M. Simonyi, Biochem. Biophys. Res. Commun. 301, 776 (2003) http://dx.doi.org/10.1016/S0006-291X(03)00030-5CrossrefGoogle Scholar

  • [20] F. Zsila, Z. Bikádi, M. Simonyi, Bioorg. Med. Chem. 12, 3239 (2004) Google Scholar

  • [21] L. Shen, H.-F. Ji, Spectrochim. Acta A 67, 619 (2007) http://dx.doi.org/10.1016/j.saa.2006.08.018CrossrefGoogle Scholar

  • [22] F. Jasim, F. Ali, Microchem. J. 39, 156 (1989) http://dx.doi.org/10.1016/0026-265X(89)90024-6CrossrefGoogle Scholar

  • [23] R.S. Drago, Physical Methods for Chemists, 2nd edition (Saunder College, New York, 1992) Google Scholar

  • [24] A. Shokrollahi, M. Ghaedi, H.R. Rajabi, Annali di Chim. 97, 823 (2007) http://dx.doi.org/10.1002/adic.200790067CrossrefGoogle Scholar

  • [25] A. Shokrollahi, M. Ghaedi, H. Ghaedi, J. Chinese Chem. Soc. 54, 933 (2007) Google Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 388–394, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0037-8.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alexandra Ormond and Harold Freeman
Materials, 2013, Volume 6, Number 3, Page 817
[2]
Supat Buddee and Sumpun Wongnawa
Journal of Sol-Gel Science and Technology, 2015, Volume 75, Number 1, Page 152
[3]
Supat Buddee, Sumpun Wongnawa, Pimpaporn Sriprang, and Chaval Sriwong
Journal of Nanoparticle Research, 2014, Volume 16, Number 4
[4]
Joshna Chittigori, Abhishek Kumar, Lian Li, Sammaiah Thota, Akshay Kokil, Lynne A. Samuelson, Daniel J. Sandman, and Jayant Kumar
Tetrahedron, 2014, Volume 70, Number 4, Page 991
[5]
Rohini Kitture, Sougata Ghosh, Parag Kulkarni, X. L. Liu, Dipak Maity, S. I. Patil, Ding Jun, Yogesh Dushing, S. L. Laware, B. A. Chopade, and S. N. Kale
Journal of Applied Physics, 2012, Volume 111, Number 6, Page 064702
[6]
Fotouh R. Mansour and Neil D. Danielson
Microchemical Journal, 2012, Volume 103, Page 74
[7]
Rocktotpal Konwarh, Jyoti Prasad Saikia, Niranjan Karak, and Bolin Kumar Konwar
Colloids and Surfaces B: Biointerfaces, 2010, Volume 81, Number 2, Page 578

Comments (0)

Please log in or register to comment.
Log in