Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 21, 2009

Studies on complex formation between curcumin and Hg(II) ion by spectrophotometric method: A new approach to overcome peak overlap

  • Ratanasuda Waranyoupalin EMAIL logo , Sumpun Wongnawa , Malinee Wongnawa , Chaveng Pakawatchai , Pharkphoom Panichayupakaranant and Panit Sherdshoopongse
From the journal Open Chemistry

Abstract

Complex formation between curcumin and Hg(II) ion MeOH/H2O (1: 1 v/v) was investigated and monitored by the spectrophotometric method. The absorption peak of unreacted curcumin which was close and overlapped with that of the complex, was removed by calculation using Microsoft Excel, thereby, allowing determination of the stoichiometry of the complex by the mole-ratio and the Job’s continuous variation methods. Both methods indicated that a 1:1 complex of curcumin and Hg(II) was formed in solution. The formation constant of the 1:1 Hg(II) complex was obtained from two methods, the equilibrium concentration calculation and the linear plot of Benesi-Hildebrand equation, as log K = 4.44 ± 0.16 and 4.83 ± 0.02, respectively. The structure is proposed as a tetrahedral complex of Hg(II) with one curcumin and two chloride ions as ligands.

[1] PDR for Herbal Medicines, 2nd edition (Medical Economics Company, Montvale, 2000) Search in Google Scholar

[2] L. Baum, A. Ng, J. Alzheimers Dis. 6, 367 (2004) 10.3233/JAD-2004-6403Search in Google Scholar

[3] G.P. Lim, T. Chu, F. Yang, W. Beech, S.A. Frautschy, G.M. Cole, J. Neurosci. 21, 8370 (2001) 10.1523/JNEUROSCI.21-21-08370.2001Search in Google Scholar

[4] Y. Jiao, J. Wilkinson IV, E.C. Pietsch, J.L. Buss, W. Wang, R. Planalp, F.M. Torti, S.V. Torti, Free Radical Biol. Med. 40, 1152 (2006) http://dx.doi.org/10.1016/j.freeradbiomed.2005.11.00310.1016/j.freeradbiomed.2005.11.003Search in Google Scholar

[5] K. Thompson, K. Bohmerle, E. Polishchuk, C. Martins, P. Toleikis, J. Tse, V. Yuen, J.H. McNeill, C. Orvig, J. Inorg. Biochem. 98, 2063 (2004) http://dx.doi.org/10.1016/j.jinorgbio.2004.09.01110.1016/j.jinorgbio.2004.09.011Search in Google Scholar

[6] L. Shen, H.-Y. Zhang, H.-F. Ji, THEOCHEM 757, 199 (2005) http://dx.doi.org/10.1016/j.theochem.2005.05.01610.1016/j.theochem.2005.05.016Search in Google Scholar

[7] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 4th edition (John Wiley and Sons, New York, 1980) Search in Google Scholar

[8] M. Borsari, E. Ferrari, R. Grandi, M. Saladini, Inorg. Chim. Acta 328, 61 (2002) http://dx.doi.org/10.1016/S0020-1693(01)00687-910.1016/S0020-1693(01)00687-9Search in Google Scholar

[9] I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, R.K. Banerjee, Cur. Sci. 87, 44 (2004) Search in Google Scholar

[10] M. Bernabe-Pineda, M.T. Ramirez-Silva, M.A. Romero-Romo, E. Gonzalez-Vergara, A. Rojas-Hernandez, Spectrochim. Acta A 60, 1105 (2004) http://dx.doi.org/10.1016/S1386-1425(03)00344-510.1016/S1386-1425(03)00344-5Search in Google Scholar

[11] A. Barik, B. Mishra, A. Kunwar, L. Shen, H. Mohan, R.M. Kadam, S. Dutta, H.-Y. Zhang, K.I. Priyadarsini, Free Radic. Biol. Med. 39, 811 (2005) http://dx.doi.org/10.1016/j.freeradbiomed.2005.05.00510.1016/j.freeradbiomed.2005.05.005Search in Google Scholar

[12] A. Sundaryono, A. Nourmamode, C. Gardrat, A. Fritsch, A. Castellan, J. Mol. Struct. 649, 177 (2003) http://dx.doi.org/10.1016/S0022-2860(03)00050-410.1016/S0022-2860(03)00050-4Search in Google Scholar

[13] K. Basavaiah, V.S. Charan, Science Asia 20, 359 (2002) http://dx.doi.org/10.2306/scienceasia1513-1874.2002.28.35910.2306/scienceasia1513-1874.2002.28.359Search in Google Scholar

[14] G. Yin, D. Xu, Z. Xu, Chem. Phys. Lett. 365, 232 (2002) http://dx.doi.org/10.1016/S0009-2614(02)01450-110.1016/S0009-2614(02)01450-1Search in Google Scholar

[15] M. Kádár, A. Biró, K. Tóth, B. Vermes, P. Huszthy, Spectrochim. Acta A 62, 1032 (2005) http://dx.doi.org/10.1016/j.saa.2005.04.03410.1016/j.saa.2005.04.034Search in Google Scholar

[16] S.A. Mizyed, E. Al-Jarrah, D. Marji, M. Ashram, Spectrochim. Acta A 68, 1274 (2007) http://dx.doi.org/10.1016/j.saa.2007.02.00410.1016/j.saa.2007.02.004Search in Google Scholar

[17] G.D. Christian, J.E. O’Reilly, Ultraviolet and Visible Absorption Spectroscopy in Instrumental Analysis, 2nd edition (Allyn and Bacon, Boston, 1986) Search in Google Scholar

[18] F. Zsila, Z. Bikádi, M. Simonyi, Tetrahedron: Asymmetry 14, 2433 (2003) http://dx.doi.org/10.1016/S0957-4166(03)00486-510.1016/S0957-4166(03)00486-5Search in Google Scholar

[19] F. Zsila, Z. Bikádi, M. Simonyi, Biochem. Biophys. Res. Commun. 301, 776 (2003) http://dx.doi.org/10.1016/S0006-291X(03)00030-510.1016/S0006-291X(03)00030-5Search in Google Scholar

[20] F. Zsila, Z. Bikádi, M. Simonyi, Bioorg. Med. Chem. 12, 3239 (2004) 10.1016/j.bmc.2004.03.074Search in Google Scholar

[21] L. Shen, H.-F. Ji, Spectrochim. Acta A 67, 619 (2007) http://dx.doi.org/10.1016/j.saa.2006.08.01810.1016/j.saa.2006.08.018Search in Google Scholar

[22] F. Jasim, F. Ali, Microchem. J. 39, 156 (1989) http://dx.doi.org/10.1016/0026-265X(89)90024-610.1016/0026-265X(89)90024-6Search in Google Scholar

[23] R.S. Drago, Physical Methods for Chemists, 2nd edition (Saunder College, New York, 1992) Search in Google Scholar

[24] A. Shokrollahi, M. Ghaedi, H.R. Rajabi, Annali di Chim. 97, 823 (2007) http://dx.doi.org/10.1002/adic.20079006710.1002/adic.200790067Search in Google Scholar PubMed

[25] A. Shokrollahi, M. Ghaedi, H. Ghaedi, J. Chinese Chem. Soc. 54, 933 (2007) 10.1002/jccs.200700134Search in Google Scholar

Published Online: 2009-6-21
Published in Print: 2009-9-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0037-8/html
Scroll to top button