Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Crystallization of nordstrandite in ethylene glycol / water solutions: electron microscopic studies

Maria Antunes / Helena Santos / Persio Santos
  • Department of Metallurgical and Materials Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0038-7

Abstract

The present work shows the growth of nordstrandite microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the multi-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.

Keywords: Aluminium hydroxide; Crystal growth; Electron microscopy; Nordstrandite

  • [1] H. Saafeld, M. Wedde, Z. Kristallogr. 139, 129 (1974) CrossrefGoogle Scholar

  • [2] P. H. Hsu, in: J.B. Dixon, S.B. Weed (Eds.), Minerals in Soil Environments (Soil Science Society of America, Madison, 1989) Google Scholar

  • [3] H. Souza Santos, P.K. Kiyohara, P. Souza Santos, J. Mat. Sci Letters 19, 1525 (2000) http://dx.doi.org/10.1023/A:1006708602621CrossrefGoogle Scholar

  • [4] R. Rothbauer, F. Zigan, H. O’Daniel, Z. Kristallogr. 125, 317 (1967) http://dx.doi.org/10.1524/zkri.1967.125.125.317CrossrefGoogle Scholar

  • [5] J.H.L. Watson, J. Parsons, A. Vallejo-Freire, P. Souza Santos, Kolloid Z. 140, 102 (1955) http://dx.doi.org/10.1007/BF01510493CrossrefGoogle Scholar

  • [6] R. Schoen, C.E. Roberson, Amer. Miner. 55, 43 (1970) Google Scholar

  • [7] R. Van Nordstrand, W.P. Hettinger, C.D. Keith, Nature 177, 713 (1956) http://dx.doi.org/10.1038/177713a0CrossrefGoogle Scholar

  • [8] H.J. Bosmans, Acta Crystallogr. B 26, 649 (1970) http://dx.doi.org/10.1107/S0567740870002911CrossrefGoogle Scholar

  • [9] A. Violante, P. Violante, Clays Clay Min. 28, 425 (1980) http://dx.doi.org/10.1346/CCMN.1980.0280604CrossrefGoogle Scholar

  • [10] R.C. Mackenzie, E.A.C. Follett, R. Meldau, in: J.A. Gard (Ed.), The Electron-Optical Investigation of Clays (Mineralogical Society, London, 1971) Google Scholar

  • [11] W.H. Gitzen, Alumina as a Ceramic Society (American Ceramic Society, Columbus 1970) Google Scholar

  • [12] L.L. Musselman, in: L.D. Hart (Ed.), Alumina Chemicals (American Ceramic Society, Westerville, 1990) Google Scholar

  • [13] P. Violante, A. Violante, J.M. Tait, Clays and Clay Miner. 30, 431 (1982) http://dx.doi.org/10.1346/CCMN.1982.0300605CrossrefGoogle Scholar

  • [14] A. Violante, P.M. Huang, Clays and Clay Miner. 33, 181 (1985) http://dx.doi.org/10.1346/CCMN.1985.0330303CrossrefGoogle Scholar

  • [15] R.I. Barnhisel, C.I. Rich, Soil. Sci. Soc. Amer. 29, 531 (1965) CrossrefGoogle Scholar

  • [16] K.P. Prodromou, A.S. Pavlatou-Ve, Clays Clay Miner. 43, 111 (1995) http://dx.doi.org/10.1346/CCMN.1995.0430113CrossrefGoogle Scholar

  • [17] P. Adamo, M. Pigna, S. Vingiani, A. Violante, Clay Clay Min. 51, 350 (2003) http://dx.doi.org/10.1346/CCMN.2003.0510312CrossrefGoogle Scholar

  • [18] M.L.P. Antunes, H. Souza Santos, P. Souza Santos, Materials Chem. Phys. 76, 243 (2002) http://dx.doi.org/10.1016/S0254-0584(01)00535-1CrossrefGoogle Scholar

  • [19] D. Aldcroft, G.C. Bye, in: G.P. Stewart (Ed.), Science of Ceramics (Academic Press, London, 1967) vol. 3 Google Scholar

  • [20] V.A. Lipin, Russian J. Appl. Chem. 74, 184 (2001) (In Russian) http://dx.doi.org/10.1023/A:1012749428765CrossrefGoogle Scholar

  • [21] O.P. Krivoruchko, R.A. Buyanov, M.A.S. Fedotorov, L.M. Plyasova, Russian J. Inorg. Chem. 23, 988 (1978) (In Russian) Google Scholar

  • [22] P. Souza Santos, P.K. Kiyohara, H. Souza Santos, Bol. Tecn. Petrobrás 41 (1998) Google Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 461–467, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0038-7.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in