Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Stabilization of horseradish peroxidase by covalent conjugation with dextran aldehyde against temperature and pH changes

Melda Altikatoglu
  • Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34210, Esenler, Istanbul, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Candan Arioz
  • Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, 34210, Esenler, Istanbul, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yeliz Basaran
  • Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, 34210, Esenler, Istanbul, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huriye Kuzu
  • Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, 34210, Esenler, Istanbul, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0041-z

Abstract

Stabilization of Horseradish Peroxidase (HRP; EC 1.11.1.7) against temperature and pH via the formation of the conjugates obtained by multipoint covalent bonding of dextran aldehyde (DA) to the enzyme were studied. Hence, three different molar weighted dextrans (17.5 kD, 75 kD, 188 kD) were covalently bonded to purified enzyme with different molar ratios (nHRP/nDA 20/1, 10/1, 1/1, 1/5, 1/10, 1/15, 1/20). The thermal stabilities of the obtained conjugates were evaluated with the activities determined at different temperatures (25, 30, 35, 40, 50, 60, 70, 80°C) applying 60 minutes incubation time. Conjugates formed were characterized by gel-permeation chromatography (GPC) and fluorescence techniques. The conjugate synthesized using dextran 75 kDa with nHRP/nDA 1/10 molar ratio showed better thermal stability than other conjugates and purified enzyme at pH 7. This conjugate also has wider activity pH range than purified enzyme. In addition, mentioned conjugate at pH 7 had very long storage lifetime compared to purified enzyme at +4°C and room temperature; which is considered a favorable feature for usage in practice.

Keywords: Enzyme stabilization; Covalent conjugate; Horseradish peroxidase; Dextran; GPC

  • [1] C. Ó’Fágáain, Enzym. Microb. Technol. 33, 137 (2003) http://dx.doi.org/10.1016/S0141-0229(03)00160-1CrossrefGoogle Scholar

  • [2] S.S. Despande, Enzyme immunoassays: from concept to product development (Chapman and Hall, New York, 1996) 149 Google Scholar

  • [3] S. Kumar, C-J. Tsai, R. Nussinov, Protein Eng. 13, 179 (2000) http://dx.doi.org/10.1093/protein/13.3.179CrossrefGoogle Scholar

  • [4] M.A. Longo, D. Combes, J. Chem. Biotechnol. 74, 25 (1999) http://dx.doi.org/10.1002/(SICI)1097-4660(199901)74:1<25::AID-JCTB978>3.0.CO;2-BCrossrefGoogle Scholar

  • [5] K. Chattopadhyay, S. Mazumdar, Biochemistry 39, 263 (2001) http://dx.doi.org/10.1021/bi990729oCrossrefGoogle Scholar

  • [6] M. Sola-Penna, J.R. Meyer-Fernandes, Arch. Biochem. Biophys. 360, 10 (1998) http://dx.doi.org/10.1006/abbi.1998.0906CrossrefGoogle Scholar

  • [7] J.Z. Liu, H.Y. Song, L.P. Weng, L.N. Ji, J. Mol. Catal. B: Enzym. 18, 225 (2002) http://dx.doi.org/10.1016/S1381-1177(02)00100-5CrossrefGoogle Scholar

  • [8] R. Wimmer, M. Olsson, M.T.N. Petersen, R. Hatti-Kaul, S.B. Petersen, N. Muller, J. Biotechnol. 55, 85 (1997) http://dx.doi.org/10.1016/S0168-1656(97)00061-8CrossrefGoogle Scholar

  • [9] L. Betancor, F. López-Gallego, A. Hidalgo, N. Alonso-Morales, M. Fuentes, R. Fernández-Lafuente, J.M. Guisán, J. Biotechnol. 110, 201 (2004) http://dx.doi.org/10.1016/j.jbiotec.2004.02.003CrossrefGoogle Scholar

  • [10] C. Kühlmeyer, J. Klein, Enzym. Microb. Technol. 32, 99 (2003) http://dx.doi.org/10.1016/S0141-0229(02)00243-0CrossrefGoogle Scholar

  • [11] V. Arasaratnam, I.Y. Galaev, B. Mattiason, Enzym. Microb. Technol. 27, 254 (2000) http://dx.doi.org/10.1016/S0141-0229(00)00195-2CrossrefGoogle Scholar

  • [12] V. Sanz, S. de Marcos, J.R. Castillo, J. Galban, J. Am. Chem. Soc. 127, 1038 (2005) http://dx.doi.org/10.1021/ja046830kCrossrefGoogle Scholar

  • [13] N.C Veitch, C. Nigel, Phytochemistry 65, 249 (2004) http://dx.doi.org/10.1016/j.phytochem.2003.10.022CrossrefGoogle Scholar

  • [14] I.J. Castellanos, R. Crespo, K. Griebenow, J. Control Release. 88, 135 (2003) http://dx.doi.org/10.1016/S0168-3659(02)00488-1CrossrefGoogle Scholar

  • [15] Y. Murakami, R. Hoshi, A. Hirata, J. Mol. Catal. B: Enzym. 22, 79 (2003) http://dx.doi.org/10.1016/S1381-1177(03)00009-2CrossrefGoogle Scholar

  • [16] M.A.M.E. Vertommen, V.A Nierstrasz, M. van der Veer, M.M.C.G Warmoeskerken, J. Biotechnol. 120, 376 (2005) http://dx.doi.org/10.1016/j.jbiotec.2005.06.015CrossrefGoogle Scholar

  • [17] Y. Murakami, A. Hirata, J. Biotechnol. Bioeng. 88, 441 (1999) Google Scholar

  • [18] A.M. O’Brien, C. O’Fágáin, P.F. Nielsen, K. Welinder, Biotechnol. Bioeng. 76, 277 (2001) http://dx.doi.org/10.1002/bit.1194CrossrefGoogle Scholar

  • [19] A. Abian, O. Wilson, L. Mateo, C, Fernández-Lorento, G. Palomo, J.M. Fernández-Lafuente, J.M. Gusian, D. Re, A. Tam, M. Damianti, J. Mol. Catal. B: Enzym. 19–20, 295 (2002) http://dx.doi.org/10.1016/S1381-1177(02)00180-7CrossrefGoogle Scholar

  • [20] C. Mateo, O. Abian, R. Fernandez-Lafuente, J.M. Guisan, Enzyme Microb. Technol. 26, 509 (2000) http://dx.doi.org/10.1016/S0141-0229(99)00188-XCrossrefGoogle Scholar

  • [21] A.S. Dilgimen, Z. Mustafaeva, M. Demchenko, T. Kaneko, Y. Osada, M. Mustafaev, Biomaterials 22, 2383 (2001) http://dx.doi.org/10.1016/S0142-9612(00)00425-7CrossrefGoogle Scholar

  • [22] A. Başalp, E. Bermek, B. Çırakoğlu, V. Çoka, M.I. Mustafaev, A.S. Saraç, Hybridoma 15, 233 (1996) http://dx.doi.org/10.1089/hyb.1996.15.233CrossrefGoogle Scholar

  • [23] P. Christakopoulos, E. Kourentzi, D.G. Hatzinikolaou, M. Claeyssens, D. Kekos, B.J. Macris, Carbohydr. Res. 314, 95 (1998) http://dx.doi.org/10.1016/S0008-6215(98)00284-5CrossrefGoogle Scholar

  • [24] F-Y. Jeng, S-C. Lin, Proc. Biochem. 41, 1566 (2006) http://dx.doi.org/10.1016/j.procbio.2006.02.021CrossrefGoogle Scholar

  • [25] R.M. De la Casa, J.M. Guisán, J.M. Sánchez-Montero, J.V. Sinisterra, Enzym. Microb. Technol. 30, 30 (2002) http://dx.doi.org/10.1016/S0141-0229(01)00446-XCrossrefGoogle Scholar

  • [26] X. Hong, W. Guo, H. Yuan, J. Li, Y. Liu, L. Ma, Y. Bai, T. Li, J. Magn. Mater. 269, 95 (2004) http://dx.doi.org/10.1016/S0304-8853(03)00566-3CrossrefGoogle Scholar

  • [27] I.P. Gladysheva, N.A. Moroz, A.I. Papisova, N.I. Larionova, Biochemistry 66, 474 (2001) Google Scholar

  • [28] M. Fuentes, L.R. Segura, O. Abian, L. Betancor, A. Hidalgo, C. Mateo, R. Fernández-Lafuente, J.M. Guisán, Proteomics. 4, 2602 (2004) http://dx.doi.org/10.1002/pmic.200300766CrossrefGoogle Scholar

  • [29] S.M.A.G. Ulson de Souza, E.F.A.A. Ulson de Souza, J. Hazard. Mater. 147, 1073 (2007) http://dx.doi.org/10.1016/j.jhazmat.2007.06.003CrossrefGoogle Scholar

  • [30] G-Y. Kim, K-B. Lee, S-H. Cho, J. Shim, S-H. Moon, J. Hazard. Mater. B 126, 183 (2005) http://dx.doi.org/10.1016/j.jhazmat.2005.06.023CrossrefGoogle Scholar

  • [31] D.G. Pina, A.V. Shnyrova, F. Gavilanes, A. Rodríguez, F. Leal, M.G. Roig, I.Y. Sakharov, G.G. Zhada, E. Villar, V.L. Shnyrov, Eur. J. Biochem. 268, 120 (2001) http://dx.doi.org/10.1046/j.1432-1033.2001.01855.xCrossrefGoogle Scholar

  • [32] A.S.L. Carvalho, M.T. Neves-Petersen, S.B. Petersen, M.R. Aires-Barros, E. Pinho e Melo, Biochim. Biophys. Acta 1747, 99 (2004) Google Scholar

  • [33] M. Tanaka, A. Morimoto, K. Ishimori, I. Morishima, Pure and Appl. Chem. 70, 911 (1998) http://dx.doi.org/10.1351/pac199870040911CrossrefGoogle Scholar

  • [34] S. Mumtaz, B.K. Bachhavat, Biochim. Biophys. Acta 1117(2), 174 (1992) Google Scholar

  • [35] M.G. Brattain, M.E. Marks, T.G. Pretlow, Anal. Biochem. 72, 346 (1976) http://dx.doi.org/10.1016/0003-2697(76)90540-6CrossrefGoogle Scholar

  • [36] A. Guerra, A. Ferraz, Enzyme Microb. Technol. 28, 308 (2000) http://dx.doi.org/10.1016/S0141-0229(00)00350-1CrossrefGoogle Scholar

  • [37] D. Mislovičvá, J. Masárová, M. Bučko, P. Gemenier, Enzyme Microb. Technol. 39, 579 (2006) http://dx.doi.org/10.1016/j.enzmictec.2005.11.012CrossrefGoogle Scholar

  • [38] H-Y. Song, J-H. Yao, J-Z. Liu, S-J. Zhou, Y-H. Xiong, L-N. Ji, Enzyme Microb. Technol. 36, 605 (2005) http://dx.doi.org/10.1016/j.enzmictec.2004.12.018CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 423–428, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0041-z.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christiane Claaßen, Marc H. Claaßen, Fabian Gohl, Günter E. M. Tovar, Kirsten Borchers, and Alexander Southan
Macromolecular Bioscience, 2018, Page 1800104
[2]
Bongiwe Silwana, Charlton van der Horst, Emmanuel Iwuoha, and Vernon Somerset
Procedia Technology, 2017, Volume 27, Page 172
[3]
Mithat Celebi, Murat Topuzogullari, and Huriye Kuzu
Applied Biochemistry and Biotechnology, 2016, Volume 180, Number 2, Page 261
[4]
Lalit D. Kagliwal and Rekha S. Singhal
International Journal of Biological Macromolecules, 2014, Volume 69, Page 329
[5]
María L. Villalonga, Paula Díez, Alfredo Sánchez, María Gamella, José M. Pingarrón, and Reynaldo Villalonga
Chemical Reviews, 2014, Volume 114, Number 9, Page 4868
[6]
Ellappan Kalaiarasan and Thayumanavan Palvannan
Journal of the Taiwan Institute of Chemical Engineers, 2014, Volume 45, Number 2, Page 625
[7]
Andrea Grotzky, Emiliano Altamura, Jozef Adamcik, Paolo Carrara, Pasquale Stano, Fabio Mavelli, Thomas Nauser, Raffaele Mezzenga, A. Dieter Schlüter, and Peter Walde
Langmuir, 2013, Volume 29, Number 34, Page 10831
[8]
Mithat Celebi, Mehmet Arif Kaya, Melda Altikatoglu, and Huseyin Yildirim
Applied Biochemistry and Biotechnology, 2013, Volume 171, Number 3, Page 716
[9]
Swati B. Jadhav and Rekha S. Singhal
Carbohydrate Polymers, 2013, Volume 92, Number 2, Page 1724
[10]
Swati B. Jadhav and Rekha S. Singhal
Carbohydrate Polymers, 2012, Volume 90, Number 4, Page 1811
[11]
Andrea Grotzky, Thomas Nauser, Huriye Erdogan, A. Dieter Schlüter, and Peter Walde
Journal of the American Chemical Society, 2012, Volume 134, Number 28, Page 11392
[12]
Rafael C. Rodrigues, Ángel Berenguer-Murcia, and Roberto Fernandez-Lafuente
Advanced Synthesis & Catalysis, 2011, Volume 353, Number 13, Page 2216
[13]
Asli Arslan, Huriye Kuzu, and Melda Altikatoglu
Journal of Carbohydrate Chemistry, 2010, Volume 29, Number 5, Page 222
[14]
Melda Altikatoglu and Mithat Celebi
Artificial Cells, Blood Substitutes, and Biotechnology, 2011, Volume 39, Number 3, Page 185
[15]
Melda Altikatoglu and Yeliz Basaran
The Protein Journal, 2011, Volume 30, Number 2, Page 84
[16]
Selva Onder, Mithat Celebi, Melda Altikatoglu, Arzu Hatipoglu, and Huriye Kuzu
Applied Biochemistry and Biotechnology, 2011, Volume 163, Number 3, Page 433
[18]
Melda Altikatoglu and Huriye Kuzu
Polish Journal of Chemical Technology, 2010, Volume 12, Number 1

Comments (0)

Please log in or register to comment.
Log in