Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Polycationic graft copolymers of poly(N-vinylpyrrolidone) as non-viral vectors for gene transfection

Yun-Hai Liu / Xiao-Hong Cao / Dao-Feng Peng / Wen-Yuan Xu
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0045-8

Abstract

Novel graft copolymers of 2-(dimethylamino)ethyl methacrylate (DMAEMA) with N-vinylpyrrolidone (NVP) were designed and synthesized by the free radical copolymerization of DMAEMA with precursor polymers of vinyl-functionalized poly(N-vinylpyrrolidone) (PVP). The ability of the PVP- grafted copolymers to bind and condense DNA was confirmed by ethidium bromide displacement assay, agarose gel electrophoresis and transmission electron microscopy. The presence of PVP in the copolymers had a favorable effect on the biophysical properties of polymer/DNA complexes. Colloidal stable complexes obtained from the copolymer systems, were shown to be separate, uniformly spherical nanoparticles by transmission electron microscopy. The approximate diameter of the complexes was 150–200 nm, as determined by dynamic light scattering studies. These results confirm an important role played by the PVP grafts in producing compact stable DNA complexes. The ζ-potential measurements revealed that the incorporation of the PVP grafts reduced the positive surface charge of polymer/DNA complexes. The cytotoxicity of the copolymers decreased with an increasing fraction of PVP. Furthermore, in vitro transfection experiments with these copolymers showed improved ability of transfection in cell culture, demonstrating an important role for PVP grafts in enhancement of the transfection efficiency.

Keywords: Poly(2-(dimethylamino)ethy lmethacrylate); Poly(N-vinylpyrrolidone); Cytotoxicity; Gene transfection

  • [1] K.A. Partridge, R.O.C. Oreffo, Tissue. Eng. 10, 295 (2004) http://dx.doi.org/10.1089/107632704322791934CrossrefGoogle Scholar

  • [2] M. Haider, Z. Megeed, H. Ghandehari, J. Control. Rel. 95, 1(2004) http://dx.doi.org/10.1016/j.jconrel.2003.11.011CrossrefGoogle Scholar

  • [3] P. Lehn, S. Fabrega, N. Oudrhiri, J. Navarro, Adv. Drug Delivery Rev. 30, 5 (1998) http://dx.doi.org/10.1016/S0169-409X(97)00102-6CrossrefGoogle Scholar

  • [4] G.D. Schmidt-Wolf, I.G.H. Schmidt-Wolf, Trends. Mol. Med. 9, 67 (2003) http://dx.doi.org/10.1016/S1471-4914(03)00005-4CrossrefGoogle Scholar

  • [5] S. Han, R.I. Mahato, Y.K. Sung, S.W. Kim, Mol. Therapy 2, 302 (2000) http://dx.doi.org/10.1006/mthe.2000.0142CrossrefGoogle Scholar

  • [6] T.G. Park, J.H. Jeong, S.W. Kim, Adv. Drug Delivery Rev. 58, 467 (2006) http://dx.doi.org/10.1016/j.addr.2006.03.007CrossrefGoogle Scholar

  • [7] A.V. Slita, N.A. Kasyanenko, O.V. Nazarova, I.I. Gavrilova, E.M. Eropkina, A.K. Sirotkin, T.D. Smirnova, O.I. Kiselev, E.F. Pannarin, J. Biotech. 127, 679 (2007) http://dx.doi.org/10.1016/j.jbiotec.2006.07.016CrossrefGoogle Scholar

  • [8] F. Liu, L. Huang, J. Control. Rel. 78, 259 (2002) http://dx.doi.org/10.1016/S0168-3659(01)00494-1CrossrefGoogle Scholar

  • [9] A.G. Schatzlein, Anti-Cancer Drugs 12, 275 (2001) http://dx.doi.org/10.1097/00001813-200104000-00001CrossrefGoogle Scholar

  • [10] A.C. Hunter, Adv. Drug Delivery Rev. 58, 1523 (2006) http://dx.doi.org/10.1016/j.addr.2006.09.008CrossrefGoogle Scholar

  • [11] G.A. Pietersz, C.-K. Tang, V. Apostolopoulos, Mini-Rev. Med. Chem. 6, 1285 (2006) http://dx.doi.org/10.2174/138955706778992987CrossrefGoogle Scholar

  • [12] H.-L. Jiang, Y.K. Kim, R. Arote, J.W. Nah, M.H. Cho, Y.J. Choi, T. Akaike, C.S. Cho, J. Control. Rel. 117, 273 (2007) http://dx.doi.org/10.1016/j.jconrel.2006.10.025CrossrefGoogle Scholar

  • [13] S.-F. Li, W. Dong, Y.-W. Zong, W. Yin, G.-H. Jin, Q.-G. Hu, X.-F. Huang, W.-H. Jiang, Z.-C. Hua, Mol. Ther. 15, 515 (2007) http://dx.doi.org/10.1038/sj.mt.6300072CrossrefGoogle Scholar

  • [14] G. Minigo, A. Scholzen, C.-K. Tang, J.C. Hanley, M. Kalkanidis, G.A. Pietersz, V. Apostolopoulos, M. Plebanski, Vaccine 25, 1316 (2007) http://dx.doi.org/10.1016/j.vaccine.2006.09.086CrossrefGoogle Scholar

  • [15] D.S. Shah, T. Sakthivel, I. Toth, A.T. Florence, A.D. Wilderspin, Int. J. Pharm. 208, 41 (2000) http://dx.doi.org/10.1016/S0378-5173(00)00534-2CrossrefGoogle Scholar

  • [16] Y. Onishi, Y. Eshita, A. Murashita, M. Mizuno, J. Yoshida, Nanomedicine 3, 184 (2007) CrossrefGoogle Scholar

  • [17] M. Hashimoto, M. Morimoto, H. Saimoto, Y. Shigemasa, H. Yanagie, M. Eriguchi, T. Sato, Biotech. Letters 28, 815 (2006) http://dx.doi.org/10.1007/s10529-006-9006-xCrossrefGoogle Scholar

  • [18] P. van de Wetering, N.M.E. Schuurmans-Nieuwenbroek, M.J. van Streenbergen, D.J.A. Crommelin, W.E. Hennink, J. Control. Rel. 64, 193 (2000) http://dx.doi.org/10.1016/S0168-3659(99)00130-3CrossrefGoogle Scholar

  • [19] M.A. Wolfert, P.R. Dash, O. Nazarova, D. Oupicky, L.W. Seymour, S. Smart, J. Strohalm, K. Ulbrich, Bioconjug. Chem. 10, 993 (1999) http://dx.doi.org/10.1021/bc990025rCrossrefGoogle Scholar

  • [20] P. van de Wetering, J.Y. Cherng, H. Talsma, W.E. Hennink, J. Control. Rel. 49, 59 (1997) http://dx.doi.org/10.1016/S0168-3659(97)00059-XCrossrefGoogle Scholar

  • [21] M.-X. Tang, F.C. Szoka, Gene Ther. 4, 823 (1997) http://dx.doi.org/10.1038/sj.gt.3300454CrossrefGoogle Scholar

  • [22] J.-F. Tan, H.P. Too, T.A. Hatton, K.C. Tam, Langmuir 22, 3744 (2006) http://dx.doi.org/10.1021/la052591iCrossrefGoogle Scholar

  • [23] M.A. Wolfert, E.H. Schacht, V. Toncheva, K. Ulbrich, O. Nazarova, L.W. Seymour, Hum. Gene Ther. 7, 2123 (1996) http://dx.doi.org/10.1089/hum.1996.7.17-2123CrossrefGoogle Scholar

  • [24] U. Rungsardthong, M. Deshpande, L. Bailey, M. Vamvakaki, S.P. Armes, M.C. Garmett, S. Stolnik, J. Control. Rel. 73, 359 (2001) http://dx.doi.org/10.1016/S0168-3659(01)00295-4CrossrefGoogle Scholar

  • [25] V. Toncheva, M.A. Wolfert, P.R. Dash, D. Oupicky, K. Ulbrich, L.W. Seymour, Biochim. Biophys. Acta 1380, 354 (1998) Google Scholar

  • [26] J.-F. Tan, P. Ravi, H.P. Too, T.A. Hatton, K.C. Tam, Biomacromolecules 6, 498 (2005) http://dx.doi.org/10.1021/bm049426mCrossrefGoogle Scholar

  • [27] L. Bromberg, S. Deshmukh, M. Temchenko, L. Iourtchenko, V. Alakhov, C. Alvarez-Lorenzo, R. Barreiro-Iglesisa, A. Concheiro, T.A. Hatton, Bioconjugate Chem. 16, 626 (2005) http://dx.doi.org/10.1021/bc049749fCrossrefGoogle Scholar

  • [28] C.K. Nisha, S.V. Manorama, M. Ganguli, S. Maiti, J.N. Kizhakkedathu, Langmuir 20, 2386 (2004) http://dx.doi.org/10.1021/la035737rCrossrefGoogle Scholar

  • [29] Y.T.A. Chim, J.K.W. Lam, Y. Ma, S.P. Armes, A.L. Lewis, C.J. Roberts, S. Stolnik, S.J.B. Tendler, M.C. Davies, Langmuir 21, 3591 (2005) http://dx.doi.org/10.1021/la047480iCrossrefGoogle Scholar

  • [30] D.W. Lim, Y.H. Yeom, T.G. Park, Bioconjugate Chem. 11, 688 (2000) http://dx.doi.org/10.1021/bc000014uCrossrefGoogle Scholar

  • [31] Z.-Q. Wu, S. Yang, W.-Y. Liao, L.-Z. Meng, Chin. J. Polym. Sci. 24, 315 (2006) http://dx.doi.org/10.1142/S0256767906001345CrossrefGoogle Scholar

  • [32] V.P. Torchilin, T.S. Levchenko, K.R. Whiteman, Biomaterials 22, 3035 (2001) http://dx.doi.org/10.1016/S0142-9612(01)00050-3CrossrefGoogle Scholar

  • [33] S.C. De Smedt, J. Demeester, W.E. Hennink, Pharm. Res. 17, 113 (2000) http://dx.doi.org/10.1023/A:1007548826495CrossrefGoogle Scholar

  • [34] P. van de Wetering, E. Moret, N.M.E. Schuurmans-Nieuwenbrock, M.J. van Streenbergen, W.E. Hennink, Bioconjugate Chem. 10, 589 (1999) http://dx.doi.org/10.1021/bc980148wCrossrefGoogle Scholar

  • [35] H. Lodish, A. Berk, P.D.B. Matsudaira, J. Darnell, Molecular cell biology, 4th edition (WH Freeman & Company, New York, 2001) Google Scholar

  • [36] U. Rungsardthong, M. Deshpande, L. Bailey, M. Vamvakaki, S.P. Armes, M.C. Garnett, S. Stolnik, J. Control. Rel. 73, 359 (2001) http://dx.doi.org/10.1016/S0168-3659(01)00295-4CrossrefGoogle Scholar

  • [37] S. Stolnik, I. Illum, S.S. Davis, Adv. Drug Del. Rev. 16, 195 (1995) http://dx.doi.org/10.1016/0169-409X(95)00025-3CrossrefGoogle Scholar

  • [38] P. van de Watering, J.Y. Cherng, H. Talsma, D.J.A. Crommelin, W.E. Hennink, J. Control. Rel. 53, 145 (1998) http://dx.doi.org/10.1016/S0168-3659(97)00248-4CrossrefGoogle Scholar

  • [39] U. Rungsardthong, T. Ehtezazi, L. Bailey, S.P. Armes, M.C. Garnett, S. Stolnik, Biomacromolecules 4, 683 (2003) http://dx.doi.org/10.1021/bm025736yCrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 532–541, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0045-8.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Miloš Lukáč, Ivan Lacko, Marián Bukovský, Zuzana Kyselová, Janka Karlovská, Branislav Horváth, and Ferdinand Devínsky
Open Chemistry, 2010, Volume 8, Number 1

Comments (0)

Please log in or register to comment.
Log in