Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 7, Issue 3


Volume 13 (2015)

Sulphur speciation of PM10 samples by XANES spectroscopy

Federico Cozzi / Italo Pellegrini / Gianpiero Adami / Edoardo Reisenhofer / Massimo Bovenzi
  • Clinical Unit of Occupational Medicine, Department of Public Health Sciences, University of Trieste, Centro Tumori, 34129, Trieste, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pierluigi Barbieri
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0052-9


Sulphur K-edge X-ray absorption near edge structure (XANES) spectroscopy was used to identify sulphur compounds in PM10 samples collected simultaneously at two sites with different environmental situations in the province of Trieste (NE of Italy), during summer and winter seasons respectively. The first site is an industrial site located near a steel mill plant and the second is a coastal site. The sulphur speciation at the industrial site has shown the presence of the following sulphur compounds in both seasons: organic compounds (thiophenes or Polycyclic Aromatic Sulphur Heterocycles — PAHs) and sulphates while in the winter season sulphites were also present. In the coastal site organic compounds (thiophenes or PASHs) and sulphate were found during winter season, moreover bisulphates were found during summer season. Relative percentages of the different sulphur compounds have shown that sulphate is the most abundant form of sulphur in the industrial site samples during both seasons and in the coastal site sample collected during the winter season (> 98%); in the coastal site sample collected during the summer season the relative percentages of bisulphate and sulphate were around 40% and 60% respectively.

Keywords: Synchrotron radiation; Industrial pollution; Steel mill; Thiophenes; PASHs; sulphites

  • [1] G.M. Marcazzan, S. Vaccaro, G. Valli, R. Vecchi, Atmos. Environ. 35, 4639 (2001) http://dx.doi.org/10.1016/S1352-2310(01)00124-8CrossrefGoogle Scholar

  • [2] C.W. Sweet, D.F. Gatz, Atmos. Environ. 32(6), 1129 (1998) http://dx.doi.org/10.1016/S1352-2310(97)00454-8CrossrefGoogle Scholar

  • [3] B. Mentes, M. Elfman, B.G. Martinsson, Nucl. Instrum. Meth. B 109/110, 511 (1996) http://dx.doi.org/10.1016/0168-583X(95)00961-2CrossrefGoogle Scholar

  • [4] J.T. Kiehl, B.P. Briegleb, Science 260(5106), 311 (1993) http://dx.doi.org/10.1126/science.260.5106.311CrossrefGoogle Scholar

  • [5] P. Yuen, D.A. Hegg, T.V. Larson, J. Appl. Meteorol. 33(7), 848 (1994) http://dx.doi.org/10.1175/1520-0450(1994)033<0848:TEOICS>2.0.CO;2CrossrefGoogle Scholar

  • [6] J.N. Galloway, Water Air Soil Pol. 85(1), 15 (1995) http://dx.doi.org/10.1007/BF00483685CrossrefGoogle Scholar

  • [7] R. Van Grieken, F. Delalieux, K. Gysels, Pure Appl. Chem. 70(12), 2327 (1998) http://dx.doi.org/10.1351/pac199870122327CrossrefGoogle Scholar

  • [8] R.T. Burnett, R. Dales, D. Krewski, R. Vincent, T. Dann, J.R. Brook, Am. J. Epidemiol. 142(1), 15 (1995) Google Scholar

  • [9] X. Querol, A. Alastuey, A. Chaves, B. Spiro, F. Plana, A. Lopez-Soler, Atmos. Environ. 34, 333 (2000) http://dx.doi.org/10.1016/S1352-2310(99)00188-0CrossrefGoogle Scholar

  • [10] D. Stirling, The Sulfur Problem (Royal Society of Chemistry, London, 2000) Google Scholar

  • [11] G. Kouvarakis, N. Mihalopoulos, Atmos. Environ. 36, 929 (2002) http://dx.doi.org/10.1016/S1352-2310(01)00511-8CrossrefGoogle Scholar

  • [12] J.T. Andersson, A.H. Hegazi, B. Roberz, Anal. Bioanal. Chem. 386, 891 (2006) http://dx.doi.org/10.1007/s00216-006-0704-yCrossrefGoogle Scholar

  • [13] J. Prietzel, J. Thieme, U. Neuhäusler, J. Susini, I. Kögel-Knabner, Eur. J. Soil. Sci. 54, 423 (2003) http://dx.doi.org/10.1046/j.1365-2389.2003.00543.xCrossrefGoogle Scholar

  • [14] G.P. Huffman, S. Mitra, F.E. Huggins, N. Shah, S. Vaidya, Fulong Lu, Energ. Fuels 5, 574 (1991) http://dx.doi.org/10.1021/ef00028a008CrossrefGoogle Scholar

  • [15] G. Sarret, J. Connan, M. Kasrai, G.M. Bancroft, A. Charrié-Duhaut, S. Lemoine, P. Adam, P. Albrecht, L. Eybert-Bérard, Geochim. Cosmochim. Ac. 63(22), 3767 (1999) http://dx.doi.org/10.1016/S0016-7037(99)00205-7CrossrefGoogle Scholar

  • [16] C. Suguira, J. Chem. Phys. 74, 215 (1980) http://dx.doi.org/10.1063/1.440876CrossrefGoogle Scholar

  • [17] I.J. Pickering, R.C. Prince, T. Divers, G.N. George, FEBS Lett. 441, 11 (1998) http://dx.doi.org/10.1016/S0014-5793(98)01402-1CrossrefGoogle Scholar

  • [18] A. Rompel, R.M. Cinco, M.J. Latimer, A.E. McDermott, R.D. Guiles, A. Quintanilha, P. Natl. Acad. Sci. USA 95, 6122 (1998) http://dx.doi.org/10.1073/pnas.95.11.6122CrossrefGoogle Scholar

  • [19] A. Prange, I. Arzberger, C. Engemann, H. Modrow, O. Schumann, H.G. Trüper, R. Steudel, C. Dahl, J. Hormes, Biochim. Biophys. Acta 1428, 446 (1999) Google Scholar

  • [20] K. Xia, F. Weesner, W.F. Bleam, P.R. Bloom, U.L. Skyllberg, P.A. Helmke, Soil Sci. Soc. Am. J. 62, 1240 (1998) http://dx.doi.org/10.2136/sssaj1998.03615995006200050014xCrossrefGoogle Scholar

  • [21] J. Prietzel, J. Thieme, M. Salomé, H. Knicker, Soil Biol. Biochem. 39, 877 (2007) http://dx.doi.org/10.1016/j.soilbio.2006.10.007CrossrefGoogle Scholar

  • [22] F.E. Huggins, G.P. Huffman, W.P. Linak, C.A. Miller, Environ. Sci. Technol. 38(6), 1836 (2004) http://dx.doi.org/10.1021/es0348748CrossrefGoogle Scholar

  • [23] S. Pattanaik, F.E. Huggins, G.P. Huffman, W.P. Linak, C.A. Miller, Environ. Sci. Technol. 41(4), 1104 (2007) http://dx.doi.org/10.1021/es061635mCrossrefGoogle Scholar

  • [24] F.E. Huggins, N. Shah, G.P. Huffman, J.D. Robertson, Fuel Process Technol. 65-66, 203 (2000) http://dx.doi.org/10.1016/S0378-3820(99)00089-2CrossrefGoogle Scholar

  • [25] Y. Takahashi, Y. Kanai, H. Kamioka, A. Ohta, H. Maruyama, Z. Song, H. Shimizu, Environ. Sci. Technol. 40(16), 5052 (2006) http://dx.doi.org/10.1021/es060497yCrossrefGoogle Scholar

  • [26] S. Matsumoto, Y. Tanaka, H. Ishii, T. Tanabe, Y. Kitajima, J. Kawai, Spectrochim. Acta B 61, 991 (2006) http://dx.doi.org/10.1016/j.sab.2006.06.013CrossrefGoogle Scholar

  • [27] M. Goriaux, B. Jourdain, B. Temime, J.-L. Besombes, N. Marchand, A. Albinet, E. Leoz-Garziandia, H. Wortham, Environ. Sci. Technol. 40, 6398 (2006) http://dx.doi.org/10.1021/es060544mCrossrefGoogle Scholar

  • [28] C. Schauer, R. Niessner, U. Poeschl, Environ. Sci. Technol. 37, 2861 (2003) http://dx.doi.org/10.1021/es034059sCrossrefGoogle Scholar

  • [29] J. Susini, M. Salomé, B. Fayard, R. Ortega, B. Kaulich, Surf. Rev. Lett. 9(1), 203 (2002) http://dx.doi.org/10.1142/S0218625X02001793CrossrefGoogle Scholar

  • [30] World Bank, Coke Manufacturing, 1998 (http://lnweb18.worldbank.org/essd/envext.nsf/51ByDocName/CokeManufacturing/$FILE/HandbookCokeManufacturing.pdf) Google Scholar

  • [31] USEPA (US, Environmental Protection Agency), Air Chief, 2008 (http://www.epa.gov/ttn/chief/ap42/ch12/final/c12s02_may08.pdf) Google Scholar

  • [32] R. Barrett, B. Kaulich, M. Salomé, J. Susini, In: W. Meyer-Ilse, T. Warwick, D. Attwood (Eds.), X-Ray Microscopy: 6th International Conference, Aug. 2–6 1999, Berkeley, CA, (American Institute of Physics, Melville, NY) 458 Google Scholar

  • [33] A. Jokic, J.N. Cutler, E. Ponomarenko, G. Van Der Kamp, D.W. Aanderson, Geochim. Cosmochim. Ac. 67(14), 2585 (2003) http://dx.doi.org/10.1016/S0016-7037(03)00101-7CrossrefGoogle Scholar

  • [34] F.E. Huggins, G.P. Huffman, J.D. Robertson, J. Hazard. Mater. 74, 1 (2000) http://dx.doi.org/10.1016/S0304-3894(99)00195-8CrossrefGoogle Scholar

  • [35] I. Mori, M. Nishikawa, Y. Iwasaka, Sci. Total. Environ. 224, 87 (1998) http://dx.doi.org/10.1016/S0048-9697(98)00323-4CrossrefGoogle Scholar

  • [36] G.P. Huffman, F.E. Huggins, N. Shah, R. Huggins, W.P. Linak, C.A. Miller, R.J. Pugmire, H.L.C. Meuzelaar, M.S. Seehra, A. Manivannan, JAPCA Air Waste Man 50, 1106 (2000) Google Scholar

  • [37] T. Schade, B. Roberz, J.T. Andersson, Polycycl. Aromat. Comp. 22, 311 (2002) http://dx.doi.org/10.1080/10406630213547CrossrefGoogle Scholar

  • [38] USEPA (US, Environmental Protection Agency), Locating and Estimating Air Emissions from Sources of Polycyclic Organic Matter, Office of Air Quality Planning And Standards, Report No: EPA-454/R-98-014, Agency Research Triangle Park, 1998 Google Scholar

  • [39] D.J. Eatough, T. Major, J. Ryder, M. Hill, N.F. Mangelson, N.L. Eatough, L.D. Hansen, R.G. Mearsheimer, J.W. Fischer, Atmos. Environ. 12, 263 (1978) http://dx.doi.org/10.1016/0004-6981(78)90206-8CrossrefGoogle Scholar

  • [40] J. Bowyer, Residence Time for Hydrogen Sulfide in the Atmosphere Literature Search Results, February 6, 2003 (http://daq.state.nc.us/toxics/studies/H2S/H2S_Ambient_Air.pdf) Google Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01

Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 395–401, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0052-9.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marzia Fantauzzi, Americo Rigoldi, Bernhard Elsener, Davide Atzei, and Antonella Rossi
Journal of Electron Spectroscopy and Related Phenomena, 2014, Volume 193, Page 6
Siwatt Pongpiachan, Kanjana Thumanu, Charnwit Kositanont, Klaus Schwarzer, Jörg Prietzel, Phoosak Hirunyatrakul, and Itthipon Kittikoon
Journal of Analytical Methods in Chemistry, 2012, Volume 2012, Page 1
Siwatt Pongpiachan, Kanjana Thumanu, Warangkana Na Pattalung, Phoosak Hirunyatrakul, Itthipon Kittikoon, Kin Fai Ho, and Junji Cao
Journal of Analytical Methods in Chemistry, 2012, Volume 2012, Page 1
F. Cozzi, G. Gržinić, S. Cozzutto, P. Barbieri, M. Bovenzi, and G. Adami
X-Ray Spectrometry, 2012, Volume 41, Number 1, Page 34

Comments (0)

Please log in or register to comment.
Log in