Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 21, 2009

Characterization of the citrate precursor, used for synthesis of nanosized Mg-Zn ferrites

  • Violeta Kassabova-Zhetcheva EMAIL logo
From the journal Open Chemistry

Abstract

The citrate precursor has been used to synthesize nanocrystalline Mg-Zn-ferrites. The nature of the prepared precursor is characterized and compared with those of the precursors studied earlier, prepared by the same process. The study has been performed by inorganic and organic elemental analyses, Fourier Transformed Infrared Spectroscopy (FTIR), Mössbauer spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Electron Paramagnetic Resonance (EPR), Electronic absorption spectrometry in the UV-VIS region, Differential Thermal analysis/ Thermogravimetry (DTA-TG) analyses, and X-ray diffraction (XRD) analysis. The collected results determined the precursor as a coordination polymer with monomer unit (NH4)4{M [Fe(C6H5O7)2]2}, where M=Zn or Mg.

[1] V.D. Kassabova-Zhetcheva, L.P. Pavlova, B.I. Samuneva, Z.P. Cherkezova-Zheleva, I.G. Mitov, M.T. Mikhov, Cent. Eur. J. Chem. 5, 107 (2007) http://dx.doi.org/10.2478/s11532-006-0069-210.2478/s11532-006-0069-2Search in Google Scholar

[2] C. Marcilly, P. Courty, B. Delmon, J. Am. Cer. Soc. 53, 56 (1970) http://dx.doi.org/10.1111/j.1151-2916.1970.tb12003.x10.1111/j.1151-2916.1970.tb12003.xSearch in Google Scholar

[3] N.S. Gajbhiye, U. Bhattacharya, V.S. Darshane, Thermochim. Acta 264, 219 (1995) http://dx.doi.org/10.1016/0040-6031(95)02331-U10.1016/0040-6031(95)02331-USearch in Google Scholar

[4] N.S. Gajbhiye, S. Prasad, Thermochim. Acta 285, 325 (1996) http://dx.doi.org/10.1016/0040-6031(96)02906-110.1016/0040-6031(96)02906-1Search in Google Scholar

[5] S. Prasad, A. Vijayalakshmi, N.S. Gajbhiye, J. Therm. Anal. Calorim. 52, 595 (1998) http://dx.doi.org/10.1023/A:101013202553710.1023/A:1010132025537Search in Google Scholar

[6] B.S. Randhawa, M. Kaur, J. Radioanal. Nucl. Chem. 261, 569 (2004) http://dx.doi.org/10.1023/B:JRNC.0000037097.50377.3410.1023/B:JRNC.0000037097.50377.34Search in Google Scholar

[7] B.S. Randhawa, M. Kaur, J. Radioanal. Nucl. Chem. 256, 509 (2003) http://dx.doi.org/10.1023/A:102456000192210.1023/A:1024560001922Search in Google Scholar

[8] C.-Y. Zhang, X.-Q. Shen, J.-X. Zhou, M.-X. Jing, K. Cao, J. Sol-Gel Sci. Tech. 42, 95 (2007) http://dx.doi.org/10.1007/s10971-006-1515-510.1007/s10971-006-1515-5Search in Google Scholar

[9] J.-H. Choy, Y.-S. Han, J. Mater. Chem. 7, 1815 (1997) http://dx.doi.org/10.1039/a700687j10.1039/a700687jSearch in Google Scholar

[10] J.L. Pierre, I. Gautier-Luneau, BioMet. 13, 91 (2000) http://dx.doi.org/10.1023/A:100922570133210.1023/A:1009225701332Search in Google Scholar

[11] M. Matzapetakis, C.P. Raptopoulou, A. Tsonos, V. Papaefthymiou, N. Moon, A. Salifoglou, J. Am. Chem. Soc. 120, 13266 (1998) http://dx.doi.org/10.1021/ja980703510.1021/ja9807035Search in Google Scholar

[12] I. Gautier-Luneau, C. Merle, D. Phanon, C. Lebrun, F. Biaso, G. Serratrice, J.-L. Pierre, Chem. Eur. J. 11, 2207 (2005) http://dx.doi.org/10.1002/chem.20040108710.1002/chem.200401087Search in Google Scholar

[13] K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination Compounds, 3rd edition (Wiley Interscience Publication, New York, 1978) Search in Google Scholar

[14] V. Busigny, P. Cartigny, P. Philippot, M. Javoy, Am. Mineralog. 89, 1625 (2004) 10.2138/am-2004-11-1206Search in Google Scholar

[15] S. Petit, D. Righi, J. Madejova, A. Decarreau, Clay Mineral. 33, 579 (1998) 10.1180/claymin.1998.033.4.05Search in Google Scholar

[16] V.I. Sumin De Portilla, Am. Mineralog. 61, 95 (1976) Search in Google Scholar

[17] A. Moses Ezhil Raj, L.C. Nehru, M. Jayachandran, C. Sanjeeviraja, Cryst. Res. Techol. 42, 867 (2007) http://dx.doi.org/10.1002/crat.20071091810.1002/crat.200710918Search in Google Scholar

[18] D. Crerar, S. Wood, S. Brantley, Can. Mineralog. 23, 333 (1985) Search in Google Scholar

[19] J. Aikaite, O. Gyliene, O. Nivinskiene, Chemija (Vilnius) 14, 135 (2003) Search in Google Scholar

[20] J. Perez-Ramirez, G. Mul, F.F. Kapteijn, J.A. Muolijn, J. Mater. Chem. 11, 2529 (2001) http://dx.doi.org/10.1039/b104989p10.1039/b104989pSearch in Google Scholar

[21] I. Petrov, F. Yude, L.V. Bershow, S.S. Hafner, H. Kroll, Am. Mineralog. 74, 604 (1989) Search in Google Scholar

[22] T.R.N. Kutty, M. Nayak, Mater. Res. Bull. 34, 249 (1999) http://dx.doi.org/10.1016/S0025-5408(99)00014-810.1016/S0025-5408(99)00014-8Search in Google Scholar

[23] D.M. Sherman, T. Davit Whaite, Am. Mineralog. 70, 1262 (1985) Search in Google Scholar

[24] A.J. Francis, C.J. Dodge, App. Env. Microbiol. 59, 109 (1993) 10.1128/aem.59.1.109-113.1993Search in Google Scholar PubMed PubMed Central

[25] M. Rjeb, A. Labzour, A. Rjeb, S. Sayouri, M. Chafil El Idrissi, S. Massey, A. Adnot, D. Roy, M. J. Cond. Mater. 5, 168 (2004) Search in Google Scholar

[26] S.J. Kerber, J.J. Bruckner, K. Wozniak, S. Seal, S. Hardcastle, T.L. Barr, J. Vac. Sci. Technol. A 14, 1314 (1996) http://dx.doi.org/10.1116/1.57994710.1116/1.579947Search in Google Scholar

[27] A. Dmitriev, H. Spillmann, S. Stepanow, T. Strunskus, C. Woll, A.P. Seitsonen, M. Lingenfelder, N. Lin, J.V. Barth, K. Kern, Chem. Phys. Chem. 7, 2197 (2006) 10.1002/cphc.200600110Search in Google Scholar PubMed

[28] J. Lutzenkirchen, Surface Complexation Modeling (Elsevier Academic Press, New York, 2006) 54 Search in Google Scholar

[29] N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Nano Lett. 4, 383 (2004) http://dx.doi.org/10.1021/nl035139x10.1021/nl035139xSearch in Google Scholar

[30] S. Altieri, S.F. Contri, S. Agnoli, S. Valeri, Surf. Sci. 566-568, 1071 (2004) http://dx.doi.org/10.1016/j.susc.2004.06.11110.1016/j.susc.2004.06.111Search in Google Scholar

[31] B.Y. Zhu, H.I. Elim, Y.-L. Foo, T. Yu, Y. Liu, W. Ji, J.-Y. Lee, Z. Shen, A. Thye-Shen Wee, J. Thiam-Leong Thong, C.-H. Sow, Adv. Mater. 18, 587 (2006) http://dx.doi.org/10.1002/adma.20050191810.1002/adma.200501918Search in Google Scholar

[32] R. Turcu, D. Bika, L. Vekas, N. Aldea, D. Makovei, A. Nan, O. Pana, O. Marinica, R. Grecu, C.V.L. Pop, Rom. Rep. Phys. 58, 359 (2006) Search in Google Scholar

[33] G. Van der Laan, C. Westra, C. Hass, G.A. Sawatzky, Phys. Rev. B 23, 4369 (1981) http://dx.doi.org/10.1103/PhysRevB.23.436910.1103/PhysRevB.23.4369Search in Google Scholar

[34] A.P. Grosvenor, B.A. Kobe, M.C. Biensinger, N.C. McIntyre, Surf. Interface Anal. 36, 1564 (2004) http://dx.doi.org/10.1002/sia.198410.1002/sia.1984Search in Google Scholar

[35] M. Getsova, D. Todorovsky, V. Enchev, I. Wawer, Monatshef. Chem. (Chem. Mon.) 138, 389 (2007) 10.1007/s00706-007-0624-3Search in Google Scholar

[36] C. Cannas, A. Falqui, A. Musinu, D. Peddis, G. Piccaluga, J. Nanopart. Res. 8, 255 (2006) http://dx.doi.org/10.1007/s11051-005-9028-710.1007/s11051-005-9028-7Search in Google Scholar

Published Online: 2009-6-21
Published in Print: 2009-9-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0054-7/html
Scroll to top button