Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

The effect of layer charge and exchangeable cations on sorption of biphenyl on montmorillonites

Helena Pálková / Jana Madejová / Peter Komadel
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0055-6

Abstract

Montmorillonies separated from the bentonites SAz-1 (Cheto, AZ, USA), and Cressfield (New South Wales, Australia) were used as starting materials. Reduced charge montmorillonites (RCMs) were prepared from these chemically different and Li-saturated montmorillonites via heating at temperatures in the range of 120–300°C. The residual exchangeable Li+ cations were then replaced with tetramethylammonium (TMA+) or hexadecyltrimethylammonium (HDTMA+) cations and the ability of the modified montmorillonites to adsorb biphenyl was investigated. Lower adsorption was observed for Li-montmorillonites than for the organoclays. The extent of adsorption was dependent on both the layer charge of montmorillonite and the size of alkylammonium cations. HDTMA-forms prepared from unheated Li-montmorillonites adsorbed biphenyl better than the organoclays prepared from RCMs. In contrast, the TMA-samples prepared from the Li-montmorillonites that were not heated showed low uptake of biphenyl probably due to high content of TMA+ cations. Reduction of the layer charge, resulting in lower content of TMA+ cations, increased sorption efficiency of both TMA-montmorillonites. The best adsorbents of biphenyl were HDTMA-SAz-1 prepared from the unheated Li-SAz-1 and TMA-Cressfield prepared from the Li-form heated at 180°C. These samples removed about 80% of biphenyl from its aqueous solutions

Keywords: Montmorillonite; Layer charge reduction; Alkylammonium cations; Biphenyl adsorption; Surface area

  • [1] S.A. Boyd, M.M. Mortland, C.T. Chiou, Soil Sci. Soc. Am. J. 2, 652, (1988) http://dx.doi.org/10.2136/sssaj1988.03615995005200030010xCrossrefGoogle Scholar

  • [2] J.W. Stucki, J. Wu, H. Gan, P. Komadel, A. Banin, Clays Clay Miner. 48, 290 (2000) http://dx.doi.org/10.1346/CCMN.2000.0480216CrossrefGoogle Scholar

  • [3] P. Praus, M. Turicová, S. Študentová, M. Ritz, J. Colloid Interface Sci. 304, 29 (2006) http://dx.doi.org/10.1016/j.jcis.2006.08.038CrossrefGoogle Scholar

  • [4] Z. Klapyta, T. Fujita, N. Iyi, Appl. Clay Sci. 19, 5 (2001) http://dx.doi.org/10.1016/S0169-1317(01)00059-XCrossrefGoogle Scholar

  • [5] J.L. Bonczek, W.G. Harris, P. Nkedy-Kizza, Clays Clay Miner. 50, 11 (2002) http://dx.doi.org/10.1346/000986002761002612CrossrefGoogle Scholar

  • [6] Y. Li, H. Ishida, Langmuir 19, 2479 (2003) http://dx.doi.org/10.1021/la026481cCrossrefGoogle Scholar

  • [7] R. Müller, J. Hrobáriková, C. Calberg, R. Jérôme, J. Grandjean, Langmuir 20, 2982 (2004) http://dx.doi.org/10.1021/la0304058CrossrefGoogle Scholar

  • [8] A. Pérez-Santano, R. Trujillano, C. Belver, A. Gil, M.A. Vicente, J. Colloid Interface Sci. 284, 239 (2005) http://dx.doi.org/10.1016/j.jcis.2004.09.066CrossrefGoogle Scholar

  • [9] G. Lagaly, M. Ogawa, I. Dékány, in F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.), Handbook of Clay Science, Developments in Clay Science (Elsevier Ltd., Amsterdam, 2006) 309 Google Scholar

  • [10] H. Othmani-Assmann, M. Benna-Zayani, S. Geiger, B. Fraisse, N. Kbir-Ariguib, M. Trabelsi-Ayadi, N.E. Ghermani, J.L. Grossiord, J. Phys. Chem. C 111, 10869 (2007) http://dx.doi.org/10.1021/jp068814aCrossrefGoogle Scholar

  • [11] B.J. Teppen, V. Aggarwal, Clays Clay Miner. 55, 119 (2007) http://dx.doi.org/10.1346/CCMN.2007.0550201CrossrefGoogle Scholar

  • [12] A. Gerstmans, L. Urbanczyk, R. Jérôme, J.L. Robert, J. Grandjean, Clay Miner. 43, 205 (2008) http://dx.doi.org/10.1180/claymin.2008.043.2.05CrossrefGoogle Scholar

  • [13] W.F. Jaynes, S.A. Boyd, J. Air Waste Manage. Assoc. 40, 1649 (1990) CrossrefGoogle Scholar

  • [14] J.F. Lee, M.M. Mortland, C.T. Chiou, S.A. Boyd, J. Chem. Soc. Faraday Trans. 85, 2953 (1989) http://dx.doi.org/10.1039/f19898502953CrossrefGoogle Scholar

  • [15] M.G. Roberts, H. Li, B.J. Teppen, S.A. Boyd, Clays Clay Miner. 54, 426 (2006) http://dx.doi.org/10.1346/CCMN.2006.0540403CrossrefGoogle Scholar

  • [16] Y. Chun, G. Sheng, S.A. Boyd, Clays Clay Miner. 51, 415 (2003) http://dx.doi.org/10.1346/CCMN.2003.0510407CrossrefGoogle Scholar

  • [17] J.A. Smith, P.R. Jaffé, C.T. Chiou, Environ. Sci. Technol. 24, 1167 (1990) http://dx.doi.org/10.1021/es00078a003CrossrefGoogle Scholar

  • [18] A.Z. Redding, S.E. Burns, R.T. Upson, E.F. Anderson, J. Colloid Interface Sci. 250, 261 (2002) http://dx.doi.org/10.1006/jcis.2001.8205CrossrefGoogle Scholar

  • [19] B. Chen, L. Zhu, J. Zhu, B. Xing, Environ. Sci. Technol. 39, 6093 (2005) http://dx.doi.org/10.1021/es0502674CrossrefGoogle Scholar

  • [20] J. Bujdák, N. Iyi, Chem. Mater. 18, 2618 (2006) http://dx.doi.org/10.1021/cm052715cCrossrefGoogle Scholar

  • [21] W.F. Jaynes, G.F. Vance, Soil Sci. Soc. Am. J. 60, 1742 (1996) CrossrefGoogle Scholar

  • [22] Y.-H. Shen, Colloid Surface Physicochem. Eng. Aspect 232, 143 (2004) http://dx.doi.org/10.1016/j.colsurfa.2003.10.014CrossrefGoogle Scholar

  • [23] J. Lee, M.M. Mortland, C.T. Chiou, D.E. Kile, S.A. Boyd, Clays Clay Miner. 38, 113 (1990) http://dx.doi.org/10.1346/CCMN.1990.0380201CrossrefGoogle Scholar

  • [24] C. Breen, R. Watson, J. Colloid Interface Sci. 208, 422 (1998) http://dx.doi.org/10.1006/jcis.1998.5804CrossrefGoogle Scholar

  • [25] U. Hofmann, R. Klemen, Zeit. Anorg. Chem. 262, 95 (1950) http://dx.doi.org/10.1002/zaac.19502620114CrossrefGoogle Scholar

  • [26] W.P. Gates, P. Komadel, J. Madejová, J. Bujdák, J.W. Stucki, R.J. Kirkpatrick, Appl. Clay Sci. 16, 257 (2000) http://dx.doi.org/10.1016/S0169-1317(99)00057-5CrossrefGoogle Scholar

  • [27] J. Hrobáriková, J. Madejová, P. Komadel, J. Mater. Chem. 11, 1452 (2001) http://dx.doi.org/10.1039/b100024lCrossrefGoogle Scholar

  • [28] P. Komadel, J. Hrobáriková, L. Smrcok, B. Koppelhuber-Bitschnau, Clay Miner. 37, 543 (2002) http://dx.doi.org/10.1180/0009855023730057CrossrefGoogle Scholar

  • [29] P. Komadel, J. Madejová, J. Bujdák, Clays Clay Miner. 53, 313 (2005) http://dx.doi.org/10.1346/CCMN.2005.0530401CrossrefGoogle Scholar

  • [30] W.F. Jaynes, S.A. Boyd, Clays Clay Miner. 39, 428 (1991) http://dx.doi.org/10.1346/CCMN.1991.0390412CrossrefGoogle Scholar

  • [31] J.F. Stevens, S.J. Anderson, S.A. Boyd, Clays Clay Miner. 44, 88 (1996) http://dx.doi.org/10.1346/CCMN.1996.0440108CrossrefGoogle Scholar

  • [32] G. Sheng, C.T. Johnston, B.J. Teppen, S.A. Boyd, Clays Clay Miner. 50, 25 (2002) http://dx.doi.org/10.1346/000986002761002630CrossrefGoogle Scholar

  • [33] P.G. Slade, W.P. Gates, Appl. Clay Sci. 25, 93 (2004) http://dx.doi.org/10.1016/j.clay.2003.07.007CrossrefGoogle Scholar

  • [34] S.I. Marras, A. Tsimpliaraki, I. Zuburtikudis, C. Panayiotou, J. Colloid Interface Sci. 315, 520 (2007) http://dx.doi.org/10.1016/j.jcis.2007.06.023CrossrefGoogle Scholar

  • [35] Y. Xi, Q. Zhou, R.L. Frost, H. He, J. Coll. Interface Sci. 311, 347 (2007) http://dx.doi.org/10.1016/j.jcis.2007.03.002CrossrefGoogle Scholar

  • [36] D.W. Rutherford, C.T. Chiou, D.D. Eberl, Clays Clay Miner. 45, 534 (1997) http://dx.doi.org/10.1346/CCMN.1997.0450405CrossrefGoogle Scholar

  • [37] L.J. Michot, F. Villiéras, Clay Miner. 37, 39 (2002) http://dx.doi.org/10.1180/0009855023710016CrossrefGoogle Scholar

  • [38] A. Neaman, D. Guillaume, M. Pelletier, F. Villiéras, Clay Miner. 38, 213 (2003) http://dx.doi.org/10.1180/0009855033820090CrossrefGoogle Scholar

  • [39] L. Zhu, R. Zhu, Colloid Surface Physicochem. Eng. Aspect 320, 19 (2008) http://dx.doi.org/10.1016/j.colsurfa.2008.01.003CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 494–504, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0055-6.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Junping Zheng, Jian Li, Hui Hao, and Kangde Yao
Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, Volume 28, Number 1, Page 6
[2]
Jana Madejová, Helena Pálková, and Ľuboš Jankovič
Materials Chemistry and Physics, 2012, Volume 134, Number 2-3, Page 768
[3]
Jianxi Zhu, Tong Wang, Runliang Zhu, Fei Ge, Jingming Wei, Peng Yuan, and Hongping He
Applied Clay Science, 2011, Volume 51, Number 3, Page 317
[4]
Helena Pálková, L’uboš Jankovič, Małgorzata Zimowska, and Jana Madejová
Journal of Colloid and Interface Science, 2011, Volume 363, Number 1, Page 213

Comments (0)

Please log in or register to comment.
Log in