Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Volume 13 (2015)

Solar-driven electrochemically assisted semiconductor-catalyzed iodide ion oxidation. Enhanced efficiency by oxide mixtures

Chockalingam Karunakaran / Premkumar Anilkumar
Published Online: 2009-06-21 | DOI: https://doi.org/10.2478/s11532-009-0056-5

Abstract

Oxidation of iodide ion from an air-saturated solution under natural sunlight (900±50 W m−2) on the surfaces of TiO2, ZnO, Fe2O3, MoO3 and CeO2 enhances by 6 to 12-fold on application of a cathodic bias of −0.2 to −0.3 V (vs NHE) to the semiconductors; light, the semiconductor and dissolved oxygen are essential for iodine generation. The semiconductors under an anodic bias of +0.2 to +0.3 V (vs NHE) fail to oxidize iodide ion from air-saturated solution under sunlight. Under cathodic bias, semiconductor mixtures like TiO2-ZnO, TiO2-Fe2O3 and ZnO-Fe2O3 show enhanced photocatalytic activity, indicating improved charge separation in oxide mixtures. The mechanism of photocatalysis under cathodic bias is discussed.

Keywords: Semiconductor; Photocatalysis; Potential bias; Sunlight

  • [1] T.L. Thompson, J.T. Yates, Jr., Chem. Rev. 106, 4428 (2006) http://dx.doi.org/10.1021/cr050172kCrossrefGoogle Scholar

  • [2] P.A. Christensen, T.A. Egerton, S.A.M. Kosa, J.R. Tinlin, K. Scott, J. Appl. Electrochem. 35, 683 (2005) http://dx.doi.org/10.1007/s10800-005-1366-8CrossrefGoogle Scholar

  • [3] T.A. McMurray, J.A. Byrne, P.S.M. Dunlop, E.T. McAdams, J. Appl. Electrochem. 35, 723 (2005) http://dx.doi.org/10.1007/s10800-005-1397-1CrossrefGoogle Scholar

  • [4] J.J. Sene, W.A. Zeltner, M.A. Anderson, J. Phys. Chem. B 107, 1597 (2003) http://dx.doi.org/10.1021/jp026317yCrossrefGoogle Scholar

  • [5] C. Karunakaran, P. Anilkumar, Solar Energy Mater. Solar Cells 92, 490 (2008) http://dx.doi.org/10.1016/j.solmat.2007.11.003CrossrefGoogle Scholar

  • [6] C. Karunakaran, P. Anilkumar, J. Mol. Catal. A 265, 153 (2007) http://dx.doi.org/10.1016/j.molcata.2006.10.016CrossrefGoogle Scholar

  • [7] C. Karunakaran, S. Senthilvelan, S. Karuthapandian, K. Balaraman, Catal. Commun. 5, 283 (2004) http://dx.doi.org/10.1016/j.catcom.2004.03.002CrossrefGoogle Scholar

  • [8] K-i. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A 134, 39 (2000) Google Scholar

  • [9] T. Ohno, K. Fujihara, S. Saito, M. Matsumura, Solar Energy Mater. Solar Cells 45, 169 (1997) http://dx.doi.org/10.1016/S0927-0248(96)00069-4CrossrefGoogle Scholar

  • [10] J. Hodak, C. Quinteros, M.I. Litter, E.S. Roman, J. Chem. Soc. Faraday Trans. 92, 5081 (1996) http://dx.doi.org/10.1039/ft9969205081CrossrefGoogle Scholar

  • [11] K. Tennakone, A.R. Kumarasinghe, G.R.R.A. Kumara, K.G.U. Wijayantha, P.M. Sirimanne, J. Photochem. Photobiol. A 108, 193 (1997) http://dx.doi.org/10.1016/S1010-6030(97)00090-7CrossrefGoogle Scholar

  • [12] C. Karunakaran, R. Dhanalakshmi, Solar Energy Mater. Solar Cells 92, 1315 (2008) http://dx.doi.org/10.1016/j.solmat.2008.05.002CrossrefGoogle Scholar

  • [13] C. Karunakaran, R. Dhanalakshmi, Solar Energy Mater. Solar Cells 92, 588 (2008) http://dx.doi.org/10.1016/j.solmat.2007.12.009CrossrefGoogle Scholar

  • [14] K.C. Kim, C.S. Han, J. Phys. IV France 132, 185 (2006) http://dx.doi.org/10.1051/jp4:2006132035CrossrefGoogle Scholar

  • [15] C.-M. Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992) http://dx.doi.org/10.1021/ja00039a039CrossrefGoogle Scholar

About the article

Published Online: 2009-06-21

Published in Print: 2009-09-01


Citation Information: Open Chemistry, Volume 7, Issue 3, Pages 519–523, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0056-5.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
C. Karunakaran, R. Dhanalakshmi, and P. Gomathisankar
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, Volume 92, Page 201
[2]
Chockalingam Karunakaran, Paramasivan Gomathisankar, and Govindasamy Manikandan
Korean Journal of Chemical Engineering, 2011, Volume 28, Number 5, Page 1214

Comments (0)

Please log in or register to comment.
Log in