Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 4

Issues

Volume 13 (2015)

Synthesis, structures, and spectroscopic properties of copper(I) complexes bearing 7-acetamido-4-methyl-1,8-naphthyridin-2-carbaldehyde azine and 1,2-bis(diphenylphosphino)ethane ligands

Shao-Ming Chi
  • Technical Institute of Physics and Chemistry, Graduate University of Chinese Academy of Sciences, Beijing, 100190, P.R China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu-Fei Wang / Xin Gan / De-Hui Wang / Wen-Fu Fu
  • Technical Institute of Physics and Chemistry, Graduate University of Chinese Academy of Sciences, Beijing, 100190, P.R China
  • College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650092, P.R China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-10-06 | DOI: https://doi.org/10.2478/s11532-009-0087-y

Abstract

A new ligand napaa (napaa = 7-acetamido-4-methyl-1,8-naphthyridin-2-carbaldehyde azine) and its two dinuclear copper(I) complexes, Cu2(napaa)(dppe)2(ClO4)2 (1) and Cu2(napaa)(PPh3)4(BF4)2 (2) (dppe = 1,2-bis(diphenylphosphino)ethane) and PPh3 = triphenylphosphine) were synthesized and characterized, and the structure of 1 was determined by X-ray crystal analysis. Each copper atom in 1 has a distorted tetrahedral geometry in which the metal center is associated to napaa and dppe ligands displaying chelating coordination modes and the naphthyridine rings of napaa are almost coplanar. The two complexes exhibit similar electronic absorption spectra with λmax at about 366 nm, which can be tentatively assigned to metal-to-ligand charge-transfer (MLCT) transition. The assignment was further supported by density functional theory (DFT) calculations.

Keywords: Copper(I) complex; Phosphine ligand; Napaa; Crystal structure; Photophysical properties

  • [1] P.J. van Koningsbruggen, D. Gatteschi, R.A.G. de Graaff, J.G. Haasnoot, J. Reedijk, C. Zanchini, Inorg. Chem. 34, 5175 (1995) http://dx.doi.org/10.1021/ic00125a015CrossrefGoogle Scholar

  • [2] Z.Q. Xu, L.K. Thompson, D.O. Miller, Inorg. Chem. 36, 3985 (1997) http://dx.doi.org/10.1021/ic970235kCrossrefGoogle Scholar

  • [3] J.C. Bayon et al., Inorg. Chem. 30, 2572 (1991) http://dx.doi.org/10.1021/ic00011a023CrossrefGoogle Scholar

  • [4] J. Xiang, Y.G. Yin, P. Mei, Inorg. Chem. Commun. 10, 1168 (2007) http://dx.doi.org/10.1016/j.inoche.2007.06.013CrossrefGoogle Scholar

  • [5] W.J. Stratton, D.H. Busch, J. Am. Chem. Soc. 80, 1286 (1958) http://dx.doi.org/10.1021/ja01539a004CrossrefGoogle Scholar

  • [6] J. Pons et al., Inorg. Chim. Acta 195, 61 (1992) http://dx.doi.org/10.1016/S0020-1693(00)83850-5CrossrefGoogle Scholar

  • [7] H. Nakajima, H. Nagao, K. Tanaka, J. Chem. Soc., Dalton Trans. 1405 (1996) CrossrefGoogle Scholar

  • [8] C. Bianchini, H.M. Lee, P. Barbaro, A. Meli, S. Moneti, F. Vizza, New J. Chem. 23, 929 (1999) http://dx.doi.org/10.1039/a903823jCrossrefGoogle Scholar

  • [9] C. He, S.J. Lippard, J. Am. Chem. Soc. 122, 184 (2000) http://dx.doi.org/10.1021/ja993125gCrossrefGoogle Scholar

  • [10] C. He, J.L. DuBois, B. Hedman, K.O. Hodgson, S.J. Lippard, Angew. Chem. Int. Ed. 40, 1484 (2001) http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1484::AID-ANIE1484>3.0.CO;2-ZCrossrefGoogle Scholar

  • [11] M.M. Yu, Z.X. Li, L.H. Wei, D.H. Wei, M.S. Tang, Org. Lett. 10, 5115 (2008) http://dx.doi.org/10.1021/ol8018192CrossrefGoogle Scholar

  • [12] J.F. Zhang, W.F. Fu, X. Gan, J.H. Chen, Dalton Trans. 3093 (2008) Google Scholar

  • [13] R. Martinez, A. Espinosa, A. Tarraga, P. Molina, Org. Lett. 7, 5869 (2005) http://dx.doi.org/10.1021/ol052508iCrossrefGoogle Scholar

  • [14] R.A. Henry, P.R. Hammond, J. Heterocyclic Chem. 14, 1109 (1977) http://dx.doi.org/10.1002/jhet.5570140638CrossrefGoogle Scholar

  • [15] V.A. Sauro, M.S. Workentin, J. Org. Chem. 66, 831 (2001) http://dx.doi.org/10.1021/jo0056287CrossrefGoogle Scholar

  • [16] M. Chandra, A.N. Sahay, S.M. Mobin, D.S. Pandey, J. Organomet. Chem. 658, 43 (2002) http://dx.doi.org/10.1016/S0022-328X(02)01598-XCrossrefGoogle Scholar

  • [17] A. Singh et al., J. Organomet. Chem. 689, 1821 (2004) http://dx.doi.org/10.1016/j.jorganchem.2004.02.037CrossrefGoogle Scholar

  • [18] I. Picón-Ferrer et al., J. Inorg. Biochem. 103, 94 (2009) http://dx.doi.org/10.1016/j.jinorgbio.2008.09.014CrossrefGoogle Scholar

  • [19] Z.X. Li, W.F. Fu, M.M. Yu, X.J. Zhao, Y. Chen, Dyes and Pigments 75, 516 (2007) http://dx.doi.org/10.1016/j.dyepig.2006.06.030CrossrefGoogle Scholar

  • [20] C. He, S.J. Lippard, Tetrahedron 56, 8245 (2000) http://dx.doi.org/10.1016/S0040-4020(00)00748-1CrossrefGoogle Scholar

  • [21] R.A. Henry, P.R. Hammond, J. Heterocyclic Chem. 1109 (1977) CrossrefGoogle Scholar

  • [22] G.J. Kubas, Inorg. Synth. 19, 90 (1979) http://dx.doi.org/10.1002/9780470132500.ch18CrossrefGoogle Scholar

  • [23] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of laboratory chemicals, 2nd edition (Pergamon Press, Oxford, 1980) Google Scholar

  • [24] T. Higashi, ABSCOR, empirical absorption correction based on fourier series approximation (Rigaku Corporation, Tokyo, 1995) Google Scholar

  • [25] G.M. Sheldrick, HELXS 97, program for the solution of crystal structure (University of Gottingen, Gottingen, 1997) Google Scholar

  • [26] G.M. Sheldrick, HELXL 97, program for the refinement of crystal structure (University of Gottingen, Gottingen, 1997) Google Scholar

  • [27] M.M. Yu, W.F. Fu, Z.X. Li, Z.F. Yao, L.F. Jia, Acta Cryst. Sect. E: Struct. Rep. Online 60, M1897 (2004) http://dx.doi.org/10.1107/S1600536804029253CrossrefGoogle Scholar

  • [28] Z.F. Yao, X. Gan, W.F. Fu, Cent. Eur. J. Chem. 6, 613 (2008) http://dx.doi.org/10.2478/s11532-008-0057-9CrossrefGoogle Scholar

  • [29] M.J. Frisch et al., Gaussian 03, Revision C.02. (Gaussian, Inc., Wallingford, CT, 2004) Google Scholar

About the article

Published Online: 2009-10-06

Published in Print: 2009-12-01


Citation Information: Open Chemistry, Volume 7, Issue 4, Pages 923–928, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0087-y.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. M. Nassar
Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, Volume 46, Number 9, Page 1349

Comments (0)

Please log in or register to comment.
Log in