Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 7, Issue 4 (Dec 2009)

Issues

A theoretical study of the neutral and the double-charged cation of cyclo[8]pyrrole and its interaction with inorganic anions

Ibon Alkorta / Fernando Blanco / José Elguero
Published Online: 2009-10-06 | DOI: https://doi.org/10.2478/s11532-009-0090-3

Abstract

A theoretical study of the complexation of cyclo[8]pyrrole dication, 2, and the corresponding system in neutral form, 3, with six anionic molecules has been carried out up to the B3LYP/6–311++G(2d,2p) computational level. The effect of the water solvation has been taken into account by means of the PCM method. The gas phase results correspond to the very large interaction energies expected for the interaction of molecules of opposite charge. In all the complexes, the analysis of the electron density by means of the Atoms In Molecules (AIM) methodology shows the presence of eight intermolecular interactions between the individual molecules. The results, using the water solvent model, indicate that the 2:SO42− complex is more stable than the 2:NO3−, in agreement with experimental results.

Keywords: cyclo[8]pyrrole; Cations; Anions; DFT calculations

  • [1] L.R. Eller, M. Stepien, C.J. Fowler, J.T. Lee, J.L. Sessler, B.A. Moyer, J. Am. Chem. Soc. 129, 11020 (2007) http://dx.doi.org/10.1021/ja074568kCrossrefGoogle Scholar

  • [2] R. Dagani, Chem. Eng. News, Aug. 27, 11 (2007) Google Scholar

  • [3] D. Seidel, V. Lynch, J.L. Sessler, Angew. Chem. Int. Ed. 41, 1422 (2002) http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1422::AID-ANIE1422>3.0.CO;2-OCrossrefGoogle Scholar

  • [4] M. Stepien, B. Donnio, J.L. Sessler, Angew. Chem. Int. Ed. 46, 1431 (2007) http://dx.doi.org/10.1002/anie.200603893CrossrefGoogle Scholar

  • [5] R. Custalcean, B.A. Moyer, Eur. J. Inorg. Chem. 1321 (2007) Google Scholar

  • [6] C.J. Fowler et al., J. Am. Chem. Soc. 130, 14386 (2008) http://dx.doi.org/10.1021/ja806511bCrossrefGoogle Scholar

  • [7] F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 24, 247 (1888) http://dx.doi.org/10.1007/BF01918191CrossrefGoogle Scholar

  • [8] F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 25, 1 (1888) http://dx.doi.org/10.1007/BF01964670CrossrefGoogle Scholar

  • [9] W. Kunz, J. Henle, B.W. Ninham, Curr. Opin. Colloid Interface Sci. 9, 19 (2004) http://dx.doi.org/10.1016/j.cocis.2004.05.005CrossrefGoogle Scholar

  • [10] K.D. Collins, M.W. Washabaugh, Q. Rev. Biophys. 18, 323 (1985) http://dx.doi.org/10.1017/S0033583500005369CrossrefGoogle Scholar

  • [11] W. Kunz, P. Lo Nostro, B.W. Ninham, Curr. Opin. Colloid Interface Sci. 9, 1 (2004) http://dx.doi.org/10.1016/j.cocis.2004.05.004CrossrefGoogle Scholar

  • [12] W. Kunz, Pure Appl. Chem. 78, 1611 (2006) http://dx.doi.org/10.1351/pac200678081611CrossrefGoogle Scholar

  • [13] W. Kunz, P. Lo Nostro, B.W. Ninham, Curr. Opin. Colloid Interface Sci. 9, 7 (2004) Google Scholar

  • [14] H. Zhao, S.M. Campbell, L. Jackson, Z. Song, O. Olubajo, Tetrahedron Asym. 17, 377 (2006) http://dx.doi.org/10.1016/j.tetasy.2006.01.015CrossrefGoogle Scholar

  • [15] A. Stace, Science 294, 1292 (2001) http://dx.doi.org/10.1126/science.1066731CrossrefGoogle Scholar

  • [16] N.V. Nucci, J.M. Vanderkooi, J. Mol. Liq. 143, 160 (2008) http://dx.doi.org/10.1016/j.molliq.2008.07.010CrossrefGoogle Scholar

  • [17] A.D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.3098CrossrefGoogle Scholar

  • [18] A.D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913CrossrefGoogle Scholar

  • [19] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785CrossrefGoogle Scholar

  • [20] P.A. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973) http://dx.doi.org/10.1007/BF00533485CrossrefGoogle Scholar

  • [21] M.J. Frisch et al., Gaussian 03, Gaussian, Inc., Pittsburgh PA, 2003 Google Scholar

  • [22] S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 55, 117 (1981) http://dx.doi.org/10.1016/0301-0104(81)85090-2CrossrefGoogle Scholar

  • [23] R. Cammi, J. Tomasi, J. Comput. Chem. 16, 1449 (1995) http://dx.doi.org/10.1002/jcc.540161202CrossrefGoogle Scholar

  • [24] R.F.W. Bader, Atoms in Molecules. A Quantum Theory (Oxford University, New York, 1990) Google Scholar

  • [25] P.L.A. Popelier, with a contribution from R.G.A. Bone, MORPHY98, a topological analysis program (1999) (UMIST, Engl, EU) Google Scholar

  • [26] F.W. Biegler-König, J. Schönbom, AIM2000, 2.0 edition (Bielefeld, Germany, 2002) Google Scholar

  • [27] I. Alkorta, O. Picazo, Arkivoc ix, 305 (2005) Google Scholar

  • [28] J. Barrett, Inorganic Chemistry in Aqueous Solution (Royal Society of Chemistry, Cambridge 2004) 184 Google Scholar

  • [29] I. Alkorta, F. Blanco, J. Elguero, Tetrahedron 64 (2008) 3826 http://dx.doi.org/10.1016/j.tet.2008.01.141CrossrefGoogle Scholar

  • [30] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122, 11154 (2000) http://dx.doi.org/10.1021/ja0017864CrossrefGoogle Scholar

  • [31] I. Alkorta, L. Barrios, I. Rozas, J. Elguero, Theochem. 496, 131 (2000) http://dx.doi.org/10.1016/S0166-1280(99)00177-3CrossrefGoogle Scholar

  • [32] O. Picazo, I. Alkorta, J. Elguero, J. Org. Chem. 68, 7485 (2003) http://dx.doi.org/10.1021/jo035026yCrossrefGoogle Scholar

  • [33] I. Mata, I. Alkorta, E. Espinosa, E. Molins, J. Elguero, In: C.F. Matta, R.J. Russell (Eds.), The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (Wiley, New York, 2007) 425 Google Scholar

About the article

Published Online: 2009-10-06

Published in Print: 2009-12-01


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0090-3.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
John Mack
Chemical Reviews, 2017, Volume 117, Number 4, Page 3444
[2]
Sebastiaan B. Hakkert and Máté Erdélyi
Journal of Physical Organic Chemistry, 2015, Volume 28, Number 3, Page 226
[3]
Patrycja Kowalska, Sylwester Gawinkowski, Tridib Sarma, Pradeepta K. Panda, and Jacek Waluk
The Journal of Physical Chemistry A, 2014, Volume 118, Number 6, Page 1038
[4]
Thanh-Tuan Bui, Adriana Iordache, Zhongrui Chen, Vladimir V. Roznyatovskiy, Eric Saint-Aman, Jong Min Lim, Byung Sun Lee, Sudip Ghosh, Jean-Claude Moutet, Jonathan L. Sessler, Dongho Kim, and Christophe Bucher
Chemistry - A European Journal, 2012, Volume 18, Number 19, Page 5853
[5]
Tetsuo Okujima, Guangnan Jin, Naoki Matsumoto, John Mack, Shigeki Mori, Keishi Ohara, Daiki Kuzuhara, Chie Ando, Noboru Ono, Hiroko Yamada, Hidemitsu Uno, and Nagao Kobayashi
Angewandte Chemie, 2011, Volume 123, Number 25, Page 5817
[6]
Tetsuo Okujima, Guangnan Jin, Naoki Matsumoto, John Mack, Shigeki Mori, Keishi Ohara, Daiki Kuzuhara, Chie Ando, Noboru Ono, Hiroko Yamada, Hidemitsu Uno, and Nagao Kobayashi
Angewandte Chemie International Edition, 2011, Volume 50, Number 25, Page 5699

Comments (0)

Please log in or register to comment.
Log in