Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 8, Issue 1

Issues

Volume 13 (2015)

Influence of synthesis methods on zirconium doped titania photocatalysts

Narayanan Binitha
  • Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad, 679306, India
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600, UKM Bangi, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zahira Yaakob
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600, UKM Bangi, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramakrishnan Resmi
Published Online: 2010-02-16 | DOI: https://doi.org/10.2478/s11532-009-0112-1

Abstract

Synthesis of various zirconium doped titania based photocatalysts were carried out by adapting different synthetic strategies. Doping is done on commercially available anatase titania, sol-gel titania and template mediated sol gel titania. A comparative study of the various prepared photocataysts was done using physico-chemical characterization techniques such as X-ray diffraction (XRD), surface area- pore volume measurements, UV-VIS Diffuse reflectance spectra (DRS), elemental analysis (XRF) and transmission electron microscopic (TEM) studies. The effect of zirconium and preparation methods on the photocatalytic degradation of methylorange is studied extensively. Both the surface properties and photo activity of zirconium doped titania were found to have a great dependence on the preparation methods. Among the different photocatalytic systems, the catalyst prepared by doping in the presence of urea template was found to produce a maximum photodegradation of 97.5%.

Keywords: Titania; Zirconium doping; Preparation methods; Photodegradation

  • [1] A. Kitiyanan, S. Sakulkhaemaruethai, Y. Suzuki, S. Yoshikawa, Composites Sci. Technol. 66, 1259 (2006) http://dx.doi.org/10.1016/j.compscitech.2005.10.035CrossrefGoogle Scholar

  • [2] G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D.K. Sharma, J. Am. Chem. Soc. 107, 8054 (1985) http://dx.doi.org/10.1021/ja00312a043CrossrefGoogle Scholar

  • [3] H. Tributsch, in: N. Serpone, E. Pelizetti (Eds.), Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989) 339–384 Google Scholar

  • [4] N. Serpone, D. Lawless, J. Disdier, J.M. Hermann, Langmuir 10, 643 (1994) http://dx.doi.org/10.1021/la00015a010CrossrefGoogle Scholar

  • [5] N. Serpone, D. Lawless, R. Khairlutdinov, E. Pelizzetti, J. Phys. Chem. 99, 16655 (1995) http://dx.doi.org/10.1021/j100045a027CrossrefGoogle Scholar

  • [6] G. Cerrato, L. Marchese, C. Morterra, Appl. Surf. Sci. 70, 200 (1993) http://dx.doi.org/10.1016/0169-4332(93)90427-DCrossrefGoogle Scholar

  • [7] A.P. Rivera, K. Tanaka, T. Hisanaga, App. Catal. B: Environ. 3, 37 (1993) http://dx.doi.org/10.1016/0926-3373(93)80066-MCrossrefGoogle Scholar

  • [8] H. Luo, C. Wang, Y. Yan, Chem. Mater. 15, 3841 (2003) http://dx.doi.org/10.1021/cm0302882CrossrefGoogle Scholar

  • [9] N.B. Shali, S. Sugunan, J. Sol-Gel Sci. Techn. 42, 101 (2007) http://dx.doi.org/10.1007/s10971-006-1524-4CrossrefGoogle Scholar

  • [10] Y. Wei et al., Adv. Mater. 10, 313 (1998) http://dx.doi.org/10.1002/(SICI)1521-4095(199803)10:4<313::AID-ADMA313>3.0.CO;2-MCrossrefGoogle Scholar

  • [11] P. Cheng, J. Qiu, M. Gu, Y. Jin, W. Shangguan, Mater. Lett. 58, 3751 (2004) http://dx.doi.org/10.1016/j.matlet.2004.08.008CrossrefGoogle Scholar

  • [12] J.B. Pang, K.Y. Qiu, J G. Xu, Y. Wei, J. Chen, J. Inorg. Organomet. Polym. 10, 39 (2000) http://dx.doi.org/10.1023/A:1009404415925CrossrefGoogle Scholar

  • [13] J.Y. Zheng, J.B. Pang, K.Y. Qiu, Y. Wei, Micro. Meso. Mater. 49, 189 (2001) http://dx.doi.org/10.1016/S1387-1811(01)00417-6CrossrefGoogle Scholar

  • [14] J.Y. Zheng, K.Y. Qiu, Jour Materi. Sci. 38, 437 (2003) http://dx.doi.org/10.1023/A:1021811413232CrossrefGoogle Scholar

  • [15] B.N. Narayanan et al., Euro Jour Sci. Res. 28, 567 (2009) Google Scholar

  • [16] B.D. Cullity, Elements of X-ray Diffraction, 2nd edition (Addison, Wesley, 1978) Google Scholar

  • [17] N. Binitha, S. Sugunan, Z. Yaakob, V.K. Ambili, Nanotech Malaysia Conference, 27–29 Oct. 2009, Kuala Lumpur, Malaysia (UKM, Malaysia 2009) 112 Google Scholar

  • [18] N.N. Binitha, Z. Yaakob, M.R. Reshmi, S. Sugunan, V.K. Ambili, A.A. Zetty, Catalysis Today 147, S76 (2009) http://dx.doi.org/10.1016/j.cattod.2009.07.014CrossrefGoogle Scholar

  • [19] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Water Res. 38, 3001 (2004) http://dx.doi.org/10.1016/j.watres.2004.04.046CrossrefGoogle Scholar

  • [20] N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, J. Mol. Catal. A: Chem. 266, 158 (2007) http://dx.doi.org/10.1016/j.molcata.2006.10.051CrossrefGoogle Scholar

  • [21] M.L. Zhang, T.C. An, X.H. Hu, C. Wang, G.Y. Sheng, J.M. Fu, Appl. Catal. A 260, 215 (2004) http://dx.doi.org/10.1016/j.apcata.2003.10.025CrossrefGoogle Scholar

  • [22] F. Fresno, J.M. Coronado, D. Tudela, J. Soria, Appl. Catal. B 55, 159 (2005) http://dx.doi.org/10.1016/j.apcatb.2004.07.012CrossrefGoogle Scholar

  • [23] R. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987) http://dx.doi.org/10.1021/j100300a021CrossrefGoogle Scholar

About the article

Published Online: 2010-02-16

Published in Print: 2010-02-01


Citation Information: Open Chemistry, Volume 8, Issue 1, Pages 182–187, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-009-0112-1.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yechan Won, Kevin Schwartzenberg, and Kimberly A. Gray
Chemosphere, 2018
[3]
Eric S. Agorku, Bhekie B. Mamba, Avinash C. Pandey, and Ajay K. Mishra
Journal of Nanomaterials, 2014, Volume 2014, Page 1
[4]
Godlisten N. Shao, S.M. Imran, Sun Jeong Jeon, Marion Engole, Nadir Abbas, M. Salman Haider, Shin Jae Kang, and Hee Taik Kim
Powder Technology, 2014, Volume 258, Page 99
[5]
Silija Padikkaparambil, Binitha Narayanan, Zahira Yaakob, Suraja Viswanathan, and Siti Masrinda Tasirin
International Journal of Photoenergy, 2013, Volume 2013, Page 1
[6]
Elaine M. Neville, Michael J. Mattle, David Loughrey, Bashyam Rajesh, Mahfujur Rahman, J.M. Don MacElroy, James A. Sullivan, and K. Ravindranathan Thampi
The Journal of Physical Chemistry C, 2012, Volume 116, Number 31, Page 16511
[7]
Alfred Tong, Rhiannon Braund, David Warren, and Barrie Peake
Open Chemistry, 2012, Volume 10, Number 4
[9]
Padikkaparambil Silija, Zahira Yaakob, Viswanathan Suraja, Njarakkattuvalappil Narayanan Binitha, and Zubair Shamsul Akmal
International Journal of Photoenergy, 2012, Volume 2012, Page 1

Comments (0)

Please log in or register to comment.
Log in