Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 9, Issue 1

Issues

Volume 13 (2015)

Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications

Jorge García-Barrasa
  • Chemistry Department, University of La Rioja, Grupo de Síntesis Química de La Rioja UA-CSIC, 26004, Logroño, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José López-de-Luzuriaga
  • Chemistry Department, University of La Rioja, Grupo de Síntesis Química de La Rioja UA-CSIC, 26004, Logroño, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel Monge
  • Chemistry Department, University of La Rioja, Grupo de Síntesis Química de La Rioja UA-CSIC, 26004, Logroño, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-12-16 | DOI: https://doi.org/10.2478/s11532-010-0124-x

Abstract

Chemical methods provide an easy way to synthesize silver nanoparticles (Ag NPs) in solution. These metal nanoparticles have a great potential for biomedical applications as an antibacterial, antifungal, and antiviral agent or in wound healing. The adjustment of the parameters involved in these reactions permits a precise control over the size, shape, monodispersity, and the surfaces of the nanoparticles. These nanoparticles are being used in the design of new hybrid organic-inorganic or inorganic nanomaterials for biomedical applications.

Keywords: Silver, nanoparticles; Chemical synthesis; Antimicrobial properties; Biomedical applications

  • [1] C.N.R. Rao, A. Müller, A.K. Cheetham (Eds), The Chemistry of Nanomaterials. Synthesis, Properties and Applications (Wiley-VCH Verlag, Weinheim, 2004) Vols. 1 and 2 Google Scholar

  • [2] C.N.R. Rao, A. Müller, A.K. Cheetham (Eds), Nanomaterials Chemistry. Recent Developments and New Directions (Wiley-VCH Verlag, Weinheim, 2007) Google Scholar

  • [3] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005) http://dx.doi.org/10.1021/cr030063aCrossrefGoogle Scholar

  • [4] B.L. Cushing, V.L. Koleschineko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004) http://dx.doi.org/10.1021/cr030027bCrossrefGoogle Scholar

  • [5] H.J. Klasen, Burns 26, 117 (2000) http://dx.doi.org/10.1016/S0305-4179(99)00108-4CrossrefGoogle Scholar

  • [6] H.J. Klasen, Burns 26, 131 (2000) http://dx.doi.org/10.1016/S0305-4179(99)00116-3CrossrefGoogle Scholar

  • [7] D.J. Barber, I.C. Freestone, Archaeometry 32, 33 (1990) http://dx.doi.org/10.1111/j.1475-4754.1990.tb01079.xCrossrefGoogle Scholar

  • [8] J. Pérez-Arantegui, A. Larrea, Trends Anal. Chem. 22, 327 (2003) http://dx.doi.org/10.1016/S0165-9936(03)00502-8CrossrefGoogle Scholar

  • [9] A. Caiger-Smith, Lustre Pottery: Technique, Tradition and Innovation in Islam and the Western World (Faber & Faber, London, 1985) Google Scholar

  • [10] L.M. Liz-Marzán, Materials Today Feb, 26, (2004) CrossrefGoogle Scholar

  • [11] L.S. Nair, C. T. Laurencin, J. Biomed. Nanotechnol. 3, 301 (2007) http://dx.doi.org/10.1166/jbn.2007.041CrossrefGoogle Scholar

  • [12] D.D. Evanoff, Jr., G. Chumanov, ChemPhysChem. 6, 1221 (2005) http://dx.doi.org/10.1002/cphc.200500113CrossrefGoogle Scholar

  • [13] P.C. Lee, D.J. Meisel, Phys. Chem. 86, 3391 (1982) http://dx.doi.org/10.1021/j100214a025CrossrefGoogle Scholar

  • [14] J.A. Creighton, C.G. Blatchford, M.G. Albrecht, J. Chem. Soc. Farad. Trans. II 75, 790 (1979) http://dx.doi.org/10.1039/f29797500790CrossrefGoogle Scholar

  • [15] K.P. Velikov, G.E. Zegers, A. van Blaaderen, Langmuir 19, 1384 (2003) http://dx.doi.org/10.1021/la026610pCrossrefGoogle Scholar

  • [16] L.K. Kurihara, G.M. Chow, P.E. Schoen, Nanostruct. Mater. 5, 607 (1995) http://dx.doi.org/10.1016/0965-9773(95)00275-JCrossrefGoogle Scholar

  • [17] J.A. Jacob, S. Kapoor, N. Biswas, T. Mukherjee, Colloids Surf., A Physicochem. Eng. Aspects 301, 329 (2007) http://dx.doi.org/10.1016/j.colsurfa.2006.12.070CrossrefGoogle Scholar

  • [18] P. Raveendran, J. Fu, S.L. Wallen, J. Am. Chem. Soc. 125, 13940, (2003) http://dx.doi.org/10.1021/ja029267jCrossrefGoogle Scholar

  • [19] Y.D. Yin, Z.Y. Li, Z.Y. Zhong, B. Gates, Y.N. Xia, J. Mater. Chem. 12, 522 (2002) http://dx.doi.org/10.1039/b107469eCrossrefGoogle Scholar

  • [20] I. Pastoriza-Santos, L.M. Liz-Marzán, Pure Appl. Chem. 72, 83, (2000) http://dx.doi.org/10.1351/pac200072010083CrossrefGoogle Scholar

  • [21] I. Pastoriza-Santos, L.M. Liz-Marzán, Langmuir 18, 2888 (2002) http://dx.doi.org/10.1021/la015578gCrossrefGoogle Scholar

  • [22] I. Pastoriza-Santos, L.M. Liz-Marzán, Nano Lett. 2, 903 (2002) http://dx.doi.org/10.1021/nl025638iCrossrefGoogle Scholar

  • [23] I. Pastoriza-Santos, D.S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzán, Langmuir 16, 2731 (2000) http://dx.doi.org/10.1021/la991212gCrossrefGoogle Scholar

  • [24] I. Pastoriza-Santos, L.M. Liz-Marzán, J. Mat. Chem. 18, 1724 (2008) http://dx.doi.org/10.1039/b716538bCrossrefGoogle Scholar

  • [25] M. Brust, C.J. Kiely, Colloids Surf. A Phys. Eng. Aspects 202, 175 (2002). http://dx.doi.org/10.1016/S0927-7757(01)01087-1CrossrefGoogle Scholar

  • [26] M.M. Oliveira, D. Ugarte, D. Zanchet, A.J.G. Zarbin, J. Colloid Interface Sci. 292, 429 (2005) http://dx.doi.org/10.1016/j.jcis.2005.05.068CrossrefGoogle Scholar

  • [27] C.A. Bauer, F. Stellacci, J. W. Perry, Top. Catal. 47, 32 (2008) http://dx.doi.org/10.1007/s11244-007-9032-5CrossrefGoogle Scholar

  • [28] M. Yamamoto, M. Nakamoto, J. Mat. Chem. 13, 2064 (2003) http://dx.doi.org/10.1039/b307092aCrossrefGoogle Scholar

  • [29] Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Colloid Interface Sci. 300, 169 (2006) http://dx.doi.org/10.1016/j.jcis.2006.03.041CrossrefGoogle Scholar

  • [30] M. Green, N. Allsop, G. Wakefield, P.J. Dobson, J.L. Hutchison, J. Mat. Chem. 12, 2671 (2002) http://dx.doi.org/10.1039/b203974eCrossrefGoogle Scholar

  • [31] H. Hiramatsu, F.E. Osterloh, Chem. Mater. 16, 2509 (2004) http://dx.doi.org/10.1021/cm049532vCrossrefGoogle Scholar

  • [32] S. Nath, S. Praharaj, S. Panigrahi, S. Kundu, S.K. Ghosh, S. Basu, T. Pal, Colloids Surf. A Phys. Eng. Aspects 274, 145 (2006) http://dx.doi.org/10.1016/j.colsurfa.2005.08.049CrossrefGoogle Scholar

  • [33] S.D. Bunge, T.J. Boyle, T.J. Headley, Nano Lett. 3, 901, (2003) http://dx.doi.org/10.1021/nl034200vCrossrefGoogle Scholar

  • [34] N.R. Jana, L. Gearheart, C.J. Murphy, Chem. Commun. 617 (2001) CrossrefGoogle Scholar

  • [35] C.J. Murphy, N.R. Jana, Adv. Mat. 14, 80 (2002) http://dx.doi.org/10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#CrossrefGoogle Scholar

  • [36] S. Chen, D.L. Carroll Nano Lett 2, 1003 (2002) http://dx.doi.org/10.1021/nl025674hCrossrefGoogle Scholar

  • [37] J.P. Cason, K. Khanbaswadkar, C.B. Roberts, Ind. Eng. Chem. Res. 39, 4749 (2000) http://dx.doi.org/10.1021/ie000147zCrossrefGoogle Scholar

  • [38] M.P. Pileni, Pure Appl. Chem. 72, 53 (2000) http://dx.doi.org/10.1351/pac200072010053CrossrefGoogle Scholar

  • [39] M. Maillard, S. Giorgio, M.P. Pileni, J. Phys. Chem. B 107, 2466 (2003) http://dx.doi.org/10.1021/jp022357qCrossrefGoogle Scholar

  • [40] W. Zhang, X. Qiao, J. Chen, H. Wang, J. Colloid Interface Sci. 302, 370 (2006) http://dx.doi.org/10.1016/j.jcis.2006.06.035CrossrefGoogle Scholar

  • [41] Y. Sun, Y. Xia, Science 298, 2176 (2002) http://dx.doi.org/10.1126/science.1077229CrossrefGoogle Scholar

  • [42] H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, Langmuir 12, 909 (1996) http://dx.doi.org/10.1021/la950435dCrossrefGoogle Scholar

  • [43] Y. Tan, X. Dai, Y. Li, D. Zhu, J. Mater. Chem. 13, 1069 (2003) http://dx.doi.org/10.1039/b211386dCrossrefGoogle Scholar

  • [44] R. He, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem. 12, 3783 (2002) http://dx.doi.org/10.1039/b205214hCrossrefGoogle Scholar

  • [45] Y. Sun, Y. Xia, Adv. Mat. 14, 833 (2002) http://dx.doi.org/10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-KCrossrefGoogle Scholar

  • [46] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J. 11, 454 (2005) http://dx.doi.org/10.1002/chem.200400927CrossrefGoogle Scholar

  • [47] Z.Q. Zhang, R.C. Patel, R. Kothari, C.P. Johnson, S.E. Friberg, P.A. Aikens, J. Phys. Chem. B 104, 1176 (2000) http://dx.doi.org/10.1021/jp991569tCrossrefGoogle Scholar

  • [48] Q. Yang, F. Wang, K.B. Tang, C.R. Wang, Z.W. Chen, Y.T. Qian, Mater. Chem. Phys. 78, 495 (2002) http://dx.doi.org/10.1016/S0254-0584(02)00379-6CrossrefGoogle Scholar

  • [49] Z.P. Zhang, M.Y. Han, J. Mater. Chem. 13, 641 (2003) http://dx.doi.org/10.1039/b212428aCrossrefGoogle Scholar

  • [50] M. Cheng, L. Wang, J. Han, J. Zhang, Z. Lin, D. Qian, J. Chem. Phys. B 110, 11224 (2006) http://dx.doi.org/10.1021/jp061134nCrossrefGoogle Scholar

  • [51] K. Mallick, M.J. Witcomb, M.S. Scurrell, Mater. Sci. Eng., C 26, 87 (2006) http://dx.doi.org/10.1016/j.msec.2005.06.004CrossrefGoogle Scholar

  • [52] X. Sun, S. Dong, E. Wang, Macromolecules 37, 7105 (2004) http://dx.doi.org/10.1021/ma048847tCrossrefGoogle Scholar

  • [53] W. Lesniak, A.U. Bielinska, K. Sun, K.W. Janczak, X. Shi, J.R. Baker, Jr., L.P. Balogh, Nano Lett. 5, 2123 (2005) http://dx.doi.org/10.1021/nl051077uCrossrefGoogle Scholar

  • [54] J. Zheng, R.M. Dickson, J. Am. Chem. Soc. 123, 13982 (2002) http://dx.doi.org/10.1021/ja028282lCrossrefGoogle Scholar

  • [55] H. Huang, X. Yang, Carbohydr Res 339, 2627 (2004) http://dx.doi.org/10.1016/j.carres.2004.08.005CrossrefGoogle Scholar

  • [56] Q. Wu, H. Cao, Q. Luan, J. Zhang, Z. Wang, J.H. Warner, A.A.R. Watt, Inorg. Chem. 47, 5882 (2008) http://dx.doi.org/10.1021/ic8002228CrossrefGoogle Scholar

  • [57] A. Mantion, A.G. Guex, A. Foelske, L. Mirolo, K.M. Fromm, M. Painsid, A. Taubert, Soft Matter. 4, 606 (2008) http://dx.doi.org/10.1039/b712826fCrossrefGoogle Scholar

  • [58] D. Yu, V.W.-W. Yam, J. Am. Chem. Soc. 126, 13200 (2004) http://dx.doi.org/10.1021/ja046037rCrossrefGoogle Scholar

  • [59] D. Yu, V.W.-W. Yam, J. Chem. Phys. B 109, 5497 (2005) http://dx.doi.org/10.1021/jp0448346CrossrefGoogle Scholar

  • [60] R. Jin, Y. Cao, C.A. Mirkin, K.C. Kelly, G.C. Schatz, J.G. Zheng, Science 294, 1901 (2001) http://dx.doi.org/10.1126/science.1066541CrossrefGoogle Scholar

  • [61] R. Jin, Y.C. Cao, E. Hao, G.S. Metraux, G.C. Schartz, C.A. Mirkin, Nature 425, 487 (2003) http://dx.doi.org/10.1038/nature02020CrossrefGoogle Scholar

  • [62] A. Troupis, A. Hiskia, E. Papaconstantinou, Angew Chem. Int. Ed. 41, 1911 (2002) http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1911::AID-ANIE1911>3.0.CO;2-0CrossrefGoogle Scholar

  • [63] E.J. Fernández, J. García-Barrasa, A. Laguna, J.M. López-de-Luzuriaga, M. Monge, C. Torres, Nanotechnology 19, 185602 (6pp) (2008) http://dx.doi.org/10.1088/0957-4484/19/18/185602CrossrefGoogle Scholar

  • [64] K. Philippot, B. Chaudret, C. R. Chimie 6, 1019 (2003) http://dx.doi.org/10.1016/j.crci.2003.07.010CrossrefGoogle Scholar

  • [65] B. Chaudret, C. R. Physique 6, 117 (2005) http://dx.doi.org/10.1016/j.crhy.2004.11.008CrossrefGoogle Scholar

  • [66] M. Monge, M. L. Kahn, A. Maisonnat, B. Chaudret, Angew. Chem., Int. Ed. 42, 5321 (2003) http://dx.doi.org/10.1002/anie.200351949CrossrefGoogle Scholar

  • [67] H. Schmidbaur, A. Grohmann, M.E. Olmos, A. Schier, In: S. Patai, Z. Rappoport (Eds), PATAI’s Chemistry of Functional Groups Organic Derivatives of Gold and Silver (John Wiley & Sons, Chichester 1999) Google Scholar

  • [68] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, Nanotechnology 16, 2346 (2005) http://dx.doi.org/10.1088/0957-4484/16/10/059CrossrefGoogle Scholar

  • [69] J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, J. Nanobiotechnology 3, 6 (2005) http://dx.doi.org/10.1186/1477-3155-3-6CrossrefGoogle Scholar

  • [70] C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, J. Proteome Res. 5, 916 (2006) http://dx.doi.org/10.1021/pr0504079CrossrefGoogle Scholar

  • [71] C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, J. Biol. Inorg. Chem. 12, 527 (2007) http://dx.doi.org/10.1007/s00775-007-0208-zCrossrefGoogle Scholar

  • [72] N.V. Ayala-Núñez, H.H. Lara Villegas, L del C. Ixtepan Turrent, C. Rodríguez Padilla, Nanobiotechnol. 5, 1551 (2009) http://dx.doi.org/10.1007/s12030-009-9029-1CrossrefGoogle Scholar

  • [73] S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microb. 73, 1712 (2007) http://dx.doi.org/10.1128/AEM.02218-06CrossrefGoogle Scholar

  • [74] N. Nino-Martinez, G.A. Martinez-Castanon, A. Aragon-Pina, F. Martinez-Gutierrez, J.R. Martinez-Mendoza, F. Ruiz, Nanotechnology 19, 065711 (2008) http://dx.doi.org/10.1088/0957-4484/19/6/065711CrossrefGoogle Scholar

  • [75] D. Guin, S.V. Manorama, J.N.L. Latha, S. Singh, J. Phys. Chem. C 111, 13393 (2007) http://dx.doi.org/10.1021/jp072646kCrossrefGoogle Scholar

  • [76] B.S. Necula, L.E. Fratila-Apachitei, S.A.J. Zaat, I. Apachitei, J. Duszczyk, Acta Biomater. 5, 3573 (2009) http://dx.doi.org/10.1016/j.actbio.2009.05.010CrossrefGoogle Scholar

  • [77] J. Mungkalasiri, L. Bedel, F. Emieux, J. Doré, F.N.R. Renaud, C. Sarantopoulos, F. Maury Chem. Vapor Depos. 16, 35 (2010) http://dx.doi.org/10.1002/cvde.200906764CrossrefGoogle Scholar

  • [78] S.K. Arumugam, TP. Sastry, SB. Sreedhar, A.S. Mandal, J. Biomed. Mater. Res. 80A, 391 (2007) http://dx.doi.org/10.1002/jbm.a.30895CrossrefGoogle Scholar

  • [79] F.A. Sheikh, N.A.M. Barakat, M.A. Kanjwal, R. Nirmala, J.H. Lee, H. Kim, H.Y. Kim, J. Mater. Sci.: Mater. Med. 21, 2551 (2010) http://dx.doi.org/10.1007/s10856-010-4102-9CrossrefGoogle Scholar

  • [80] M. Miranda, A. Fernández, M. Díaz, L. Esteban-Tejeda, S. López-Esteban, F. Malpartida, R. Torrecillas, J.S. Moya, Int. J. Mater. Res. 122 (2010) Google Scholar

  • [81] J. Shen, M. Shi, N. Li, B. Yan, H. Ma, Y. Hu, M. Ye, Nano Res. 3, 339 (2010) http://dx.doi.org/10.1007/s12274-010-1037-xCrossrefGoogle Scholar

  • [82] V.K. Rangari, G.M. Mohammad, S. Jeelani, A. Hundley, K. Vig, S.R. Singh, S. Pillai, Nanotechnology 21, 095102 (2010) http://dx.doi.org/10.1088/0957-4484/21/9/095102CrossrefGoogle Scholar

  • [83] O. Akhavan, E. Ghaderi, Curr. Appl. Physics 9, 1381 (2009) http://dx.doi.org/10.1016/j.cap.2009.03.003CrossrefGoogle Scholar

  • [84] L. Jiang, W. Wang, D. Wu, J. Zhan, Q. Wang, Z. Wu, R. Jin, Mater. Chem. Phys. 104, 230 (2007) http://dx.doi.org/10.1016/j.matchemphys.2007.03.023CrossrefGoogle Scholar

  • [85] W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, Nanotechnology 19, 445711 (2008) http://dx.doi.org/10.1088/0957-4484/19/44/445711CrossrefGoogle Scholar

  • [86] H. Koga, T. Kitaoka, H. Wariishi, J. Mat. Chem. 19, 2135 (2009) http://dx.doi.org/10.1039/b820310eCrossrefGoogle Scholar

  • [87] P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, X. Yang, Nanotechnology 18, 285604 (2007) http://dx.doi.org/10.1088/0957-4484/18/28/285604CrossrefGoogle Scholar

  • [88] B. Chudasama, A.K. Vala, N. Andhariya, R.V. Upadhyay, R.V. Mehta, Nano Res. 2, 955 (2009) http://dx.doi.org/10.1007/s12274-009-9098-4CrossrefGoogle Scholar

  • [89] H. Miyoshi, H. Ohno, K. Sakai, N. Okamura, H. Kourai, J. Coll. Interface Sci. 345, 433 (2010) http://dx.doi.org/10.1016/j.jcis.2010.01.034CrossrefGoogle Scholar

  • [90] O. Ozay, A. Akcali, M.T. Otkun, C. Silan, N. Aktas, N. Sahiner, Colloids Surf. B 79, 460 (2010) http://dx.doi.org/10.1016/j.colsurfb.2010.05.013CrossrefGoogle Scholar

  • [91] Y.M. Mohan, K. Vimala, V. Thomas, K. Varaprasad, B. Sreedhar, S.K. Bajpai, K.M. Raju, J. Coll. Interface Sci. 342, 73 (2010) http://dx.doi.org/10.1016/j.jcis.2009.10.008CrossrefGoogle Scholar

  • [92] P. Jain, T. Pradeep, Biotechnol. Bioeng. 90, 59, (2005) http://dx.doi.org/10.1002/bit.20368CrossrefGoogle Scholar

  • [93] R. Bryaskova, D. Pencheva, M. Kyulavska, D. Bozukova, A. Debuigne, C. Detrembleur, J. Coll. Interface Sci. 344, 424 (2010) http://dx.doi.org/10.1016/j.jcis.2009.12.040CrossrefGoogle Scholar

  • [94] K. Vimala, Y.M. Mohan, K.S. Sivudu, K. Varaprasad, S. Ravindra, N.N. Reddy, Y. Padma, B. Sreedhar, K.M. Raju, Colloids Surf. B 76, 248 (2010) http://dx.doi.org/10.1016/j.colsurfb.2009.10.044CrossrefGoogle Scholar

  • [95] L. Balogh, D. Swanson, D. Tomalia, G. Hagnauer, A. McManus, Nano Lett. 1, 18 (2001) http://dx.doi.org/10.1021/nl005502pCrossrefGoogle Scholar

  • [96] Y. Zhang, H. Peng, W. Huang, Y. Zhou, D. Yan, J. Coll. Interface Sci. 325, 371 (2008) http://dx.doi.org/10.1016/j.jcis.2008.05.063CrossrefGoogle Scholar

  • [97] S. Jaiswal, B. Duffy, A.K. Jaiswal, N. Stobie, P. McHale, Int. J. Antimicrob. Agents 36, 280 (2010) http://dx.doi.org/10.1016/j.ijantimicag.2010.05.006CrossrefGoogle Scholar

  • [98] M. Veerapandian, S.K. Lim, H.M. Nam, G. Kuppannan, K.S. Yun, Anal. Bioanal. Chem. 398, 867 (2010) http://dx.doi.org/10.1007/s00216-010-3964-5CrossrefGoogle Scholar

  • [99] R.W.-Y. Sun, R. Chen, N.P.-Y. Chung, C.-M. Ho, C.-L.-S. Lin, C.-M. Che, Chem. Commun. 5059 (2005) CrossrefGoogle Scholar

  • [100] J.S. Kim, E. Ku, K.N. Yu, J. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C. Hwang, Y. Kim, Y. Lee, D.H. Jeong, M. Cho, Nanomedicine: Nanotechnology, Biology and Medicine 3, 95 (2007) http://dx.doi.org/10.1016/j.nano.2006.12.001CrossrefGoogle Scholar

  • [101] J. Tian, K.K.Y. Wong, C.M. Ho, C.N. Lok, W.Y. Yu, C.M. Che, J.F. Chiu, P.K.H. Tam, ChemMedChem. 2, 129, (2007) http://dx.doi.org/10.1002/cmdc.200600171CrossrefGoogle Scholar

  • [102] D. Cheng, J. Yang, Y. Zhao, Chin. Med. Equip. J. 4, 26 (2004) Google Scholar

  • [103] P. Muangman, C. Chuntrasakul, S. Silthram, S. Suvanchote, R. Benjathanung, S. Kittidacha, S. Rueksomtawin, J. Med. Assoc. Thai. 89, 953 (2006) Google Scholar

  • [104] M.S. Cohen, J.M. Stern, A.J. Vanni, R.S. Kelley, E. Baumgart, D. Field, J.A. Libertino, I.C. Summerhayes, Surg. Infect. 8, 397 (2007) http://dx.doi.org/10.1089/sur.2006.032CrossrefGoogle Scholar

  • [105] A.B. Lansdown, Curr. Probl. Dermatol. 33, 17 (2006) http://dx.doi.org/10.1159/000093928CrossrefGoogle Scholar

  • [106] Z. Zhang, M. Yang, M. Huang, Y. Hu, J. Xie, Chin. J. Health Lab.Technol. 17, 1403 (2007) Google Scholar

  • [107] D. Roe, B. Karandikar, N. Bonn-Savage, B. Gibbins, J.P. Roullet, J. Antimicrob. Chemother. 61, 869 (2008) http://dx.doi.org/10.1093/jac/dkn034CrossrefGoogle Scholar

  • [108] W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumdgardner, J.L. Ong, Biomaterials 27, 5512 (2006) http://dx.doi.org/10.1016/j.biomaterials.2006.07.003CrossrefGoogle Scholar

  • [109] N.G. Khlebtsov, L.A. Dykman, J. Quant Spectr. Radiat. Transfer 1, 111 (2010) Google Scholar

  • [110] M. Rai, A. Yadav, A. Gade, Biotecnol. Adv. 27, 76 (2009) http://dx.doi.org/10.1016/j.biotechadv.2008.09.002CrossrefGoogle Scholar

  • [111] R. Vaidyanathan, K. Kalishwaralal, S. Gopalram, S. Gurunathan, Biotecnol. Adv. 27, 924 (2010) http://dx.doi.org/10.1016/j.biotechadv.2009.08.001CrossrefGoogle Scholar

About the article

Published Online: 2010-12-16

Published in Print: 2011-02-01


Citation Information: Open Chemistry, Volume 9, Issue 1, Pages 7–19, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-010-0124-x.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bartosz Klębowski, Joanna Depciuch, Magdalena Parlińska-Wojtan, and Jarek Baran
International Journal of Molecular Sciences, 2018, Volume 19, Number 12, Page 4031
[2]
Bianca Moldovan, Vladislav Sincari, Maria Perde-Schrepler, and Luminita David
Nanomaterials, 2018, Volume 8, Number 8, Page 627
[3]
Z K Zhasnakunov, A C Satyvaldiev, T Doolotkeldieva, E Omurzak, S T Bobusheva, Z Kelgenbaeva, and Z Abdullaeva
Materials Research Express, 2018, Volume 5, Number 8, Page 085404
[4]
Marta Gambucci, Luigi Tarpani, Giulia Zampini, Giuseppina Massaro, Morena Nocchetti, Paola Sassi, and Loredana Latterini
The Journal of Physical Chemistry B, 2018
[6]
Basudev Swain, Dongyoon Shin, So Yeong Joo, Nak Kyoon Ahn, Chan Gi Lee, and Jin-Ho Yoon
Waste Management, 2017
[7]
Pawel Uznanski, Joanna Zakrzewska, Frederic Favier, Slawomir Kazmierski, and Ewa Bryszewska
Journal of Nanoparticle Research, 2017, Volume 19, Number 3
[8]
Markéta Polívková, Tomáš Hubáček, Marek Staszek, Václav Švorčík, and Jakub Siegel
International Journal of Molecular Sciences, 2017, Volume 18, Number 2, Page 419
[9]
Javad Khalili Fard, Samira Jafari, and Mohammad Ali Eghbal
Advanced Pharmaceutical Bulletin, 2015, Volume 5, Number 4, Page 447
[10]
Tippabattini Jayaramudu, Gownolla Malegowd Raghavendra, Kokkarachedu Varaprasad, Gangireddygari Venkata Subba Reddy, A. Babul Reddy, K. Sudhakar, and Emmanuel Rotimi Sadiku
Journal of Applied Polymer Science, 2016, Volume 133, Number 7, Page n/a
[11]
Arindam Dey, Abhirup Dasgupta, Vijay Kumar, Aakriti Tyagi, and Anita Kamra Verma
International Nano Letters, 2015, Volume 5, Number 4, Page 223
[12]
Fanny Hoeng, Aurore Denneulin, Charles Neuman, and Julien Bras
Journal of Nanoparticle Research, 2015, Volume 17, Number 6
[13]
M. N. Gorbunova, D. M. Kisel’kov, and V. O. Nebogatikov
Russian Journal of Applied Chemistry, 2015, Volume 88, Number 2, Page 320
[14]
Jérémy Cure, Yannick Coppel, Thameur Dammak, Pier Francesco Fazzini, Adnen Mlayah, Bruno Chaudret, and Pierre Fau
Langmuir, 2015, Volume 31, Number 4, Page 1362
[15]
M. Z. A. Rafiquee, Masoom R. Siddiqui, Mohd Sajid Ali, Hamad A. Al-Lohedan, and Z. A. Al-Othman
Bioprocess and Biosystems Engineering, 2015, Volume 38, Number 4, Page 711
[16]
Jianghu Cui, Yunhua Yang, Mingtao Zheng, Yingliang Liu, Yong Xiao, Bingfu Lei, and Wei Chen
Materials Research Express, 2014, Volume 1, Number 4, Page 045007
[17]
A. García-Ruiz, J. Crespo, J.M. López-de-Luzuriaga, M.E. Olmos, M. Monge, M.P. Rodríguez-Álfaro, P.J. Martín-Álvarez, B. Bartolome, and M.V. Moreno-Arribas
Food Control, 2015, Volume 50, Page 613
[18]
M K Hossain, Q A Drmosh, Z H Yamani, and N Tabet
IOP Conference Series: Materials Science and Engineering, 2014, Volume 64, Page 012018
[19]
María Ramos-Payán, Rut Fernández-Torres, Juan Luis Pérez-Bernal, Manuel Callejón-Mochón, and Miguel Ángel Bello-López
Analytica Chimica Acta, 2014, Volume 849, Page 7
[20]
Marina Gorbunova and Larisa Lemkina
Journal of Nanoparticle Research, 2014, Volume 16, Number 8
[21]
Javier Suárez-Cerda, Gabriel Alonso Nuñez, Heriberto Espinoza-Gómez, and Lucía Z. Flores-López
Materials Science and Engineering: C, 2014, Volume 43, Page 21
[22]
Alena Reznickova, Zdenka Novotna, Zdenka Kolska, and Vaclav Svorcik
Nanoscale Research Letters, 2014, Volume 9, Number 1, Page 305
[23]
Sergiu Coseri, Alina Spatareanu, Liviu Sacarescu, Cristina Rimbu, Daniela Suteu, Stefan Spirk, and Valeria Harabagiu
Carbohydrate Polymers, 2015, Volume 116, Page 9
[24]
M. Amjadi and T. Sodouri
Journal of Applied Spectroscopy, 2014, Volume 81, Number 2, Page 232
[25]
Anirban Sarkar, Hao Wang, and Theda Daniels-Race
Electronic Materials Letters, 2014, Volume 10, Number 2, Page 325
[27]
Nadezhda Rangelova, Lyubomir Aleksandrov, Tsvetelina Angelova, Nelly Georgieva, and Rudolf Müller
Carbohydrate Polymers, 2014, Volume 101, Page 1166
[28]
Quang Huy Tran, Van Quy Nguyen, and Anh-Tuan Le
Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, Volume 4, Number 3, Page 033001
[29]
Pradipta Kumar, Khursheed B. Ansari, Aditya C. Koli, and Vilas G. Gaikar
Industrial & Engineering Chemistry Research, 2013, Volume 52, Number 19, Page 6438
[30]
Bingan Lu, Xiaodong Li, Taihong Wang, Erqing Xie, and Zhi Xu
Journal of Materials Chemistry A, 2013, Volume 1, Number 12, Page 3900
[31]
Rong Hu, Guozhu Li, Yujiao Jiang, Yi Zhang, Ji-Jun Zou, Li Wang, and Xiangwen Zhang
Langmuir, 2013, Volume 29, Number 11, Page 3773
[32]
Chandni, Nidhi Andhariya, OP Pandey, and Bhupendra Chudasama
RSC Advances, 2013, Volume 3, Number 4, Page 1127
[33]
Xinwang Cao, Bin Ding, Jianyong Yu, and Salem S. Al-Deyab
Carbohydrate Polymers, 2013, Volume 92, Number 1, Page 571
[34]
Anderson R. L. Caires, Luciano R. Costa, and Joelson Fernandes
Central European Journal of Chemistry, 2013, Volume 11, Number 1, Page 111
[35]
Joshua A. Orlicki, Nicole E. Zander, George R. Martin, Wendy E. Kosik, J. Derek Demaree, Julia L. Leadore, and Adam M. Rawlett
Journal of Applied Polymer Science, 2013, Volume 128, Number 6, Page 4181
[36]
Manabu Ishizaki, Katsuhiko Kanaizuka, Makiko Abe, Yuji Hoshi, Masatomi Sakamoto, Tohru Kawamoto, Hisashi Tanaka, and Masato Kurihara
Green Chemistry, 2012, Volume 14, Number 5, Page 1537
[37]
Ruggero Dondi, Wu Su, Gerry A. Griffith, Graham Clark, and Glenn A. Burley
Small, 2012, Volume 8, Number 5, Page 770
[39]
E. Smiechowicz, P. Kulpinski, B. Niekraszewicz, and A. Bacciarelli
Cellulose, 2011, Volume 18, Number 4, Page 975

Comments (0)

Please log in or register to comment.
Log in