Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 9, Issue 4


Volume 13 (2015)

Assessment of different sorbents efficiency for solid phase extraction of aquatic humic acids

Carmen Roba / Cristina Jimenez / Călin Baciu / Simion Beldean-Galea / Erika Levei
  • National Institute for Research and Development of Optoelectronics, Bucharest — Research Institute for Analytical Instrumentation, Cluj-Napoca, 400293, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emil Cordoš
  • National Institute for Research and Development of Optoelectronics, Bucharest — Research Institute for Analytical Instrumentation, Cluj-Napoca, 400293, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-04 | DOI: https://doi.org/10.2478/s11532-011-0035-5


In the present study, a simple procedure for the isolation by solid-phase extraction (SPE) and quantification by UV-Vis spectrometry (400 nm) of the humic acids (HAs) in the natural waters was developed. Seven different sorbents: Porapak P (polystyrene-divinylbenzene copolymer), Florisil (chemical composition: 84.0% SiO2, 15.5% MgO and 0.5% Na2SO4), Silica gel C18 (octadecyl silane), Strata X (surface modified polystyrene-divinylbenzene), Strata NH2 (silica-based trifunctional amino ligand), Strata SAX (silica-based trifunctional quaternary amine) and Strata C18-E (silica-based trifunctional C18 with hydrophobic end-capping of silanols) were tested. The HAs, adsorbed on SPE cartridges, were eluted using: NaOH (0.1 M), sodium dodecyl sulphate (SDS) (20 g L−1), and a 1:1 v/v mixture of SDS (20 g L−1) and NaOH (0.1 M). The extraction efficiency was evaluated by comparing the HAs recovery levels. The repeatability of results was estimated by the relative standard deviation (RSD). The data confirmed that Porapak P, Silica gel C18, Florisil, Strata NH2 and Strata X could be good alternatives for the traditional isolation of the aquatic HAs with XAD resin. The proposed method was applied for the determination of HAs in some waters sampled from the Western Romanian Plain. The content of HAs was correlated with the arsenic concentration and total organic carbon (TOC) level.

Keywords: Aquatic humic substances; Solid phase extraction; Sorbent efficiency; UV-Vis spectrometry

  • [1] E.M. Peña-Méndez, J. Havel, J. Patočka, J. Appl. Biomed. 3, 13 (2005) Google Scholar

  • [2] A.G. Bruccoleri, B.T. Sorenson, C.H. Langford, In: E.A. Ghabbour, G. Davies (Eds.), Humic substances: structures, models and functions (Royal Society of Chemistry, Cambridge, 2001) 193 Google Scholar

  • [3] M. Hiraide, F.L. Ren, R. Tamura, A. Mizuike, Mikrochim. Acta 2, 137 (1987) http://dx.doi.org/10.1007/BF01201833CrossrefGoogle Scholar

  • [4] C.E. W. Steinberg, Ecology of Humic Substances in Freshwaters (Springer, Berlin, 2003) 440 Google Scholar

  • [5] K. Urano, H. Wada, T. Takemasa, Water Res. 17, 1797 (1983) http://dx.doi.org/10.1016/0043-1354(83)90202-6CrossrefGoogle Scholar

  • [6] C. Kolokassidou, I. Pashalidis, C.N. Costa, A.M. Efstathiou, G. Buckau, Thermochim. Acta 454, 78 (2007) http://dx.doi.org/10.1016/j.tca.2006.12.022CrossrefGoogle Scholar

  • [7] G. Niessner, W. Buchberger, G.K. Bonn, Monatsh. Chem. 129, 597 (1998) Google Scholar

  • [8] R.F.M.J. Cleven, H.P.V. Leeuwen, Int. J. Anal. Chem. 27, 11 (1986) http://dx.doi.org/10.1080/03067318608078388CrossrefGoogle Scholar

  • [9] M.H. Sorouradin, M. Hiraide, Y.S. Kim, H. Kawaguchi, Anal. Chim. Acta 281, 191 (1993) http://dx.doi.org/10.1016/0003-2670(93)85354-MCrossrefGoogle Scholar

  • [10] P.R. Bloom, J.A. Leenheer, In: M.H.B. Hayes, P. MacCarthy, R.L. Malcolm, R.S. Swift (Eds.), Humic Substances II — In Search of Structure (Wiley, Chichester, 1989) Google Scholar

  • [11] F.C. Wu, R.D. Evans, P.J. Dillon, Y.R. Cai, Appl. Geochem. 22, 1598 (2007) http://dx.doi.org/10.1016/j.apgeochem.2007.03.043CrossrefGoogle Scholar

  • [12] G. Woelki, S. Friedrich, G. Hanschmann, R. Salzer, Fresenius’ J. Anal. Chem. 357, 548 (1997) http://dx.doi.org/10.1007/s002160050211CrossrefGoogle Scholar

  • [13] E.M. Balabanova-Radonova, M.D. Stefanova, R.N. Nikolov, Fuel 59, 271 (1980) http://dx.doi.org/10.1016/0016-2361(80)90150-7CrossrefGoogle Scholar

  • [14] M. Fukushima, S. Tanaka, H. Nakamura, S. Ito, K. Haraguchi, T. Ogata, Anal. Chim. Acta 322, 173 (1996) http://dx.doi.org/10.1016/0003-2670(95)00589-7CrossrefGoogle Scholar

  • [15] P. Van Rossum, R.G. Webb, J. Chromatogr. 150, 381 (1978) http://dx.doi.org/10.1016/S0021-9673(00)88197-2CrossrefGoogle Scholar

  • [16] M.T. Raewyn, H.K.J. Powell, Anal. Chim. Acta, 271, 195 (1993) http://dx.doi.org/10.1016/0003-2670(93)80045-MCrossrefGoogle Scholar

  • [17] J. Hejzlar, J. Chudoba, Wat. Res. 20(10), 1209 (1986) http://dx.doi.org/10.1016/0043-1354(86)90148-XCrossrefGoogle Scholar

  • [18] V. Lepane, J. Chromatogr. 845, 329 (1999) http://dx.doi.org/10.1016/S0021-9673(98)01089-9CrossrefGoogle Scholar

  • [19] A. Demirbas, Energy Sources 25, 23 (2003) CrossrefGoogle Scholar

  • [20] P. Burba, J. Rocha, D. Klockow, Fresenius J Anal. Chem. 349, 800 (1994) http://dx.doi.org/10.1007/BF00323109CrossrefGoogle Scholar

  • [21] C. Jimenez, J. Mertens, H.A.L. Rowland, C. Baciu, M. Berg, G. Furrer, S.J. Hug, E. Cordos, Presented at Goldsmith, Special Edition Geochim. et Cosmochim. Acta 73, A596 (2009) Google Scholar

  • [22] M.L. Cheng, H.Y. Ho, Y.W. Huang, F.J. Lu, D.T.Y Chiiu. Exp. Boil. Med. 228, 413 (2003) Google Scholar

  • [23] G. Abbt-Braun, U. Lankes, F.H. Frimmel, Aquat. Sci. 66, 151 (2004) http://dx.doi.org/10.1007/s00027-004-0711-zCrossrefGoogle Scholar

  • [24] H. Langhals, G. Abbt-Braun, F.H. Frimmel, Acta Hydroch. Hydrob. 28, 329 (2000) http://dx.doi.org/10.1002/1521-401X(200012)28:6<329::AID-AHEH329>3.0.CO;2-ECrossrefGoogle Scholar

  • [25] M. Klavins, V. Rodinov, I. Druvietis, Boreal Environ. Res. 8, 113 (2003) Google Scholar

  • [26] T.M. Holsen, E.R. Taylor, Y.C. Seo, P.R. Anderson, Environ. Sci. Technol. 25, 1585 (1991) http://dx.doi.org/10.1021/es00021a009CrossrefGoogle Scholar

  • [27] K.T. Valsaraj, Sep. Sci. Technol. 27, 1633 (1992) http://dx.doi.org/10.1080/01496399208029228CrossrefGoogle Scholar

  • [28] A. Ţenu, The hyperthermal water reservoirs from NW Romania (Academy Publ. House, Bucharest, 1981) 206 (In Romanian) Google Scholar

  • [29] J. Buschmann, A. Kappeler, Environ. Sci.Technol. 40(19), 6015 (2006) http://dx.doi.org/10.1021/es061057+CrossrefGoogle Scholar

About the article

Published Online: 2011-06-04

Published in Print: 2011-08-01

Citation Information: Open Chemistry, Volume 9, Issue 4, Pages 598–604, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0035-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Carmen Andreea Roba, Dan Niţă, Constantin Cosma, Vlad Codrea, and Ştefan Olah
Geothermics, 2012, Volume 42, Page 32

Comments (0)

Please log in or register to comment.
Log in