Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 9, Issue 4

Issues

Volume 13 (2015)

Synthesis, UV/vis spectra and electrochemical characterisation of arylthio and styryl substituted ferrocenes

Thomas Sørensen / Merete Nielsen
Published Online: 2011-06-04 | DOI: https://doi.org/10.2478/s11532-011-0040-8

Abstract

Two series of substituted ferrocenes were synthesised using either the Horner-Wadsworth-Emmons reaction or monolithiation of ferrocene. The series consist of arylthio- and styryl-ferrocenes with different substituents in the para position of the aryl rings of the systems. The electronic communication was investigated by comparing the substituent effects in absorption spectroscopy and in cyclic voltammetry. A small substituent effect was found in the electronic transitions of the styryl substituted ferrocenes. The oxidation of the ferrocene derivatives showed clear substituent effects as illustrated by the linear Hammett plots. The effect was shown to be an order of magnitude larger in the arylthio-systems than in the styryl systems. It is suggested that the reason behind the large effect is a direct sulfur-iron orbital overlap.

Keywords: Electrochemistry; Lithiation; Ligand effects; Ferrocene

  • [1] C.E.D. Chidsey, C.R. Bertozzi, T.M. Putvinski, A.M. Mujsce, J. Am. Chem. Soc. 112, 4301 (1990) http://dx.doi.org/10.1021/ja00167a028CrossrefGoogle Scholar

  • [2] A. Anne, A. Bouchardon, J. Moiroux, J. Am. Chem. Soc. 125, 1112 (2003) http://dx.doi.org/10.1021/ja028640kCrossrefGoogle Scholar

  • [3] D.R. van Staveren, N. Metzler-Nolte, Chem. Rev. 104, 5931 (2004) http://dx.doi.org/10.1021/cr0101510CrossrefGoogle Scholar

  • [4] D.B. Ge, R. Levicky, Chem. Comm. 46, 7190 (2010) http://dx.doi.org/10.1039/c0cc02044cCrossrefGoogle Scholar

  • [5] T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 106, 158 (1984) http://dx.doi.org/10.1021/ja00313a032CrossrefGoogle Scholar

  • [6] B.M. Trost, D.L. VanVranken, Chem. Rev. 96, 395 (1996) http://dx.doi.org/10.1021/cr9409804CrossrefGoogle Scholar

  • [7] F. Rebiere, O. Samuel, H.B. Kagan, Tetrahedron Lett. 31, 3121 (1990) http://dx.doi.org/10.1016/S0040-4039(00)94710-5CrossrefGoogle Scholar

  • [8] B. Bildstein, M. Malaun, H. Kopacka, K. Wurst, M. Mitterboeck, K.-H. Ongania, G. Opromolla, P. Zanello, Organometallics, 18, 4325 (1999) http://dx.doi.org/10.1021/om990377hCrossrefGoogle Scholar

  • [9] D.L. Lichtenberger, H.J. Fan, N.E. Gruhn, J. Organomet. Chem. 666, 75 (2003) http://dx.doi.org/10.1016/S0022-328X(02)02035-1CrossrefGoogle Scholar

  • [10] U.T. Mueller-Westerhoff, Z. Yang, G. Ingram, J. Organomet. Chem. 463, 163 (1993) http://dx.doi.org/10.1016/0022-328X(93)83414-QCrossrefGoogle Scholar

  • [11] M. Herberhold, Ferrocene Compounds Containing Heteroelements, In: A. Togni, T. Hayashi (Eds.), Ferrocenes (VCH, Weinheim, 1994) Google Scholar

  • [12] A.K. Bhattacharya, G. Thyagarajan, Chem. Rev. 81, 415 (1981) http://dx.doi.org/10.1021/cr00044a004CrossrefGoogle Scholar

  • [13] B.E. Maryanoff, A.B. Reitz, Chem. Rev. 89, 863 (1989) http://dx.doi.org/10.1021/cr00094a007CrossrefGoogle Scholar

  • [14] M. Hirano, S. Yakabe, N. Uraoka, T. Morimoto, Org. Prep. Proced. Int. 30, 360 (1998) http://dx.doi.org/10.1080/00304949809355298CrossrefGoogle Scholar

  • [15] J.A. Adeleke, Y.W. Chen, L.K. Liu, Organometallics, 11, 2543 (1992) http://dx.doi.org/10.1021/om00043a043CrossrefGoogle Scholar

  • [16] S. Miniere, V. Reboul, R.G. Arrayas, P. Metzner, J.C. Carretero, Synthesis 2249 (2003) Google Scholar

  • [17] C. Pichon, B. Odell, J.M. Brown, Chem. Comm. 598 (2004) CrossrefGoogle Scholar

  • [18] X. Li, D. Zhang, H. Pang, F. Shen, H. Fu, Y. Jiang, Y. Zhao, Org. Lett. 7, 4919 (2005) http://dx.doi.org/10.1021/ol051871mCrossrefGoogle Scholar

  • [19] G. Laven, J. Stawinski, Synlett. 225 (2009) Google Scholar

  • [20] P.J. Hotchkiss, H. Li, P.B. Paramonov, S.A. Paniagua, S.C. Jones, N.R. Armstrong, J.-L. Bredas, S.R. Marder, Adv. Mater. 21, 4496 (2009) http://dx.doi.org/10.1002/adma.200900502CrossrefGoogle Scholar

  • [21] S.-R. Jang, C. Lee, H. Choi, J.J. Ko, J. Lee, R. Vittal, K.-J. Kim, Tetrahedron Lett. 45, 125 (2004) http://dx.doi.org/10.1016/j.tetlet.2003.10.099CrossrefGoogle Scholar

  • [22] V. Cardile, R. Chillemi, L. Lombardo, S. Sciuto, C. Spatafora, C. Tringali, Z. Naturforsch., C: J. Biosci. 62, 189 (2007) Google Scholar

  • [23] S. Das, N. Gopinathan, S. Abraham, N. Jayaraman, M.K. Singh, S.K. Prasad, D.S.S. Rao, Adv. Funct. Mater. 18, 1632 (2008) http://dx.doi.org/10.1002/adfm.200701181CrossrefGoogle Scholar

  • [24] A.S. Khartulyari, M. Kapur, M.E. Maier, Org. Lett. 8, 5833 (2006) http://dx.doi.org/10.1021/ol062479rCrossrefGoogle Scholar

  • [25] C. Bellucci, F. Gualtieri, A. Chiarini, Eur. J. Med. Chem. 22, 473 (1987) http://dx.doi.org/10.1016/0223-5234(87)90039-0CrossrefGoogle Scholar

  • [26] N. Stuhr-Hansen, J.B. Christensen, N. Harrit, T. Bjørnholm, J. Org. Chem. 68, 1275 (2003) http://dx.doi.org/10.1021/jo0263770CrossrefGoogle Scholar

  • [27] R. Frantz, J.-O. Durand, G.F. Lanneau, J. Organomet. Chem. 689, 1867 (2004) http://dx.doi.org/10.1016/j.jorganchem.2004.03.007CrossrefGoogle Scholar

  • [28] A.J. Moore, A. Chesney, M.R. Bryce, A.S. Batsanov, J.F. Kelly, J.A.K. Howard, I.F. Perepichka, D.F. Perepichka, G. Meshulam, G. Berkovic, Z. Kotler, R. Mazor, V. Khodorkovsky, Eur. J. Org. Chem. 2671 (2001) CrossrefGoogle Scholar

  • [29] W.-y. Liu, Q.-h. Xu, Y.-x. Ma, Y.-m. Liang, N.-l. Dong, D.-p. Guan, J. Organomet. Chem. 625, 128 (2001) http://dx.doi.org/10.1016/S0022-328X(00)00927-XCrossrefGoogle Scholar

  • [30] T. Yasuda, J. Abe, H. Yoshida, T. Iyoda, T. Kawai, Adv. Synth. Catal. 344, 705 (2002) http://dx.doi.org/10.1002/1615-4169(200208)344:6/7<705::AID-ADSC705>3.0.CO;2-OCrossrefGoogle Scholar

  • [31] D. Plazuk, J. Zakrzewski, J. Organomet. Chem. 691, 287 (2006) http://dx.doi.org/10.1016/j.jorganchem.2005.03.057CrossrefGoogle Scholar

  • [32] N. Tsuboya, R. Hamasaki, M. Ito, M. Mitsuishi, T. Miyashita, Y. Yamamoto, J. Mater. Chem. 13, 511 (2003) http://dx.doi.org/10.1039/b211019aCrossrefGoogle Scholar

  • [33] B. Koenig, H. Zieg, P. Bubenitschek, P.G. Jones, Chem. Ber. 127, 1811 (1994) http://dx.doi.org/10.1002/cber.19941270935CrossrefGoogle Scholar

  • [34] C. Amatore, S. Gazard, E. Maisonhaute, C. Pebay, B. Schollhorn, J.-L. Syssa-Magale, J. Wadhawan, Eur. J. Inorg. Chem. 4035 (2007) Google Scholar

  • [35] P. Diter, O. Samuel, S. Taudien, H.B. Kagan, Tetrahedron: Asymmetry 5, 549 (1994) http://dx.doi.org/10.1016/0957-4166(94)80015-4CrossrefGoogle Scholar

  • [36] S. Toma, A. Gáplovský, P. Elecko, Chem. Papers. 39, 115 (1985) Google Scholar

  • [37] M.A. Carrol, A.J.P. White, D.A. Widdowson, D.J. Williams, J. Chem. Soc. Perkin Trans. 1, 1551 (2000) http://dx.doi.org/10.1039/b000833hCrossrefGoogle Scholar

  • [38] R.J. Kloetzing, M. Lotz, P. Knochel, Tetrahedron Lett. 14, 255 (2003) CrossrefGoogle Scholar

  • [39] D. Guillaneux, H.B. Kagan, J. Org. Chem. 60, 2502 (1995) http://dx.doi.org/10.1021/jo00113a033CrossrefGoogle Scholar

  • [40] Y.S. Sohn, Hendrick. Dn, H.B. Gray, J. Am. Chem. Soc. 93, 3603 (1971) http://dx.doi.org/10.1021/ja00744a011CrossrefGoogle Scholar

  • [41] A.J. Bard, L.R. Faulkner, Electrochemical Medthods, Fundamentals and Application, 2nd edition (Wiley, Hoboken, 2001) Google Scholar

  • [42] A.G. Nagy, S. Toma, J. Organomet. Chem. 266, 257 (1984) http://dx.doi.org/10.1016/0022-328X(84)80138-2CrossrefGoogle Scholar

  • [43] W.E. Britton, R. Kashyap, M. El-Hashash, M. El-Kady, M. Herberhold, Organometallics 5, 1029 (1986) http://dx.doi.org/10.1021/om00136a033CrossrefGoogle Scholar

  • [44] D. Osella, A. Carretta, C. Nervi, M. Ravera, R. Gobetto, Organometallics 19, 2791 (2000) http://dx.doi.org/10.1021/om0001366CrossrefGoogle Scholar

  • [45] Z.I. Niazimbetova, D.H. Evans, I.A. Guzei, C.D. Incarvito, A.L. Rheingold, J. Electrochem. Soc. 146, 1492 (1999) http://dx.doi.org/10.1149/1.1391792CrossrefGoogle Scholar

  • [46] L. Engman, J. Persson, C.M. Andersson, M. Berglund, J. Chem. Soc., Perkin Transactions 2, 1309 (1992) http://dx.doi.org/10.1039/p29920001309CrossrefGoogle Scholar

  • [47] C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91, 165 (2002) http://dx.doi.org/10.1021/cr00002a004CrossrefGoogle Scholar

About the article

Published Online: 2011-06-04

Published in Print: 2011-08-01


Citation Information: Open Chemistry, Volume 9, Issue 4, Pages 610–618, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0040-8.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bhagyashree Date, Junyoung Han, Sungmin Park, Eun Joo Park, Dongwon Shin, Chang Y. Ryu, and Chulsung Bae
Macromolecules, 2018
[2]
Konrad Kowalski, Łukasz Szczupak, Joanna Skiba, Obadah S. Abdel-Rahman, Rainer F. Winter, Rafał Czerwieniec, and Bruno Therrien
Organometallics, 2014, Volume 33, Number 18, Page 4697
[3]
Lamyaa Al-Riyami, Miguel A. Pineda, Justyna Rzepecka, Judith K. Huggan, Abedawn I. Khalaf, Colin J. Suckling, Fraser J. Scott, David T. Rodgers, Margaret M. Harnett, and William Harnett
Journal of Medicinal Chemistry, 2013, Volume 56, Number 24, Page 9982

Comments (0)

Please log in or register to comment.
Log in