Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 9, Issue 4

Issues

Volume 13 (2015)

Spectral study of coumarin-3-carboxylic acid interaction with human and bovine serum albumins

Aurica Varlan / Mihaela Hillebrand
Published Online: 2011-06-04 | DOI: https://doi.org/10.2478/s11532-011-0043-5

Abstract

Fluorescence spectroscopy and circular dichroism (CD) spectroscopy were used to investigate the interaction of coumarin-3-carboxylic acid with human serum albumin (HSA) and bovine serum albumin (BSA) under physiological conditions in a buffer solution of pH 7.4. Quenching constants were determined using the Lineweaver-Burk equation to provide a measure of the binding affinity of coumarin-3-carboxylic acid to HSA/BSA. Binding studies concerning the number of binding sites, n, and apparent binding constant, K, were performed by a fluorescence quenching method at different temperatures (298, 303 and 310 K). The thermodynamic parameters, enthalpy change (ΔH0) and entropy change (ΔS0) as calculated according to the van’t Hoff equation, indicated that hydrogen bonding and van der Waals forces play a major role in coumarin-3-carboxylic acid-HSA association whereas electrostatic interactions dominate in coumarin-3-carboxylic acid-BSA association. The distance, r, between the donor (HSA/BSA) and acceptor (coumarin-3-carboxylic acid) has been estimated using Förster’s equation, on the basis of resonance energy transfer. Furthermore, CD spectra were used to investigate the α-helix changes of the HSA and BSA molecules upon addition of coumarin-3-carboxylic acid.

Keywords: Human Serum Albumin; Bovine Serum Albumin; Coumarin-3-carboxylic acid; Fluorescence quenching; Circular dichroism

  • [1] A. Rieutord, P. Bourget, G. Torche, J.F. Zazzo, Int. J. Pharm. 119, 57 (1995) http://dx.doi.org/10.1016/0378-5173(94)00369-GCrossrefGoogle Scholar

  • [2] O. Bora, J. Pharm. Biopharm. 25, 63 (1997) http://dx.doi.org/10.1023/A:1025719827072CrossrefGoogle Scholar

  • [3] F.P. Nicoletti, B.D. Howes, M. Fittipaldi, G. Fanali, M. Fasano, P. Ascenzi, G. Smulevich, J. Am. Chem. Soc. 130, 11677 (2008) http://dx.doi.org/10.1021/ja800966tCrossrefGoogle Scholar

  • [4] O.K. Abou-Zied, O.I.K. Al-Shihi, J. Am. Chem. Soc. 130, 10793 (2008) http://dx.doi.org/10.1021/ja8031289CrossrefGoogle Scholar

  • [5] T. Komatsu, R.M. Wang, P.A. Zunszain, S. Curry, E. Tsuchida, J. Am. Chem. Soc. 128, 16297 (2006) http://dx.doi.org/10.1021/ja0656806CrossrefGoogle Scholar

  • [6] J.R. Simard, P.A. Zunszain, C.E. Ha, J.S. Yang, N.V. Bhagavan, I. Petitpas, S. Curry, J. Hamilton, A Proc. Natl. Acad. Sci. U.S.A. 102, 17958 (2005) http://dx.doi.org/10.1073/pnas.0506440102CrossrefGoogle Scholar

  • [7] U. Kragh-Hansen, Pharmacol. Rev. 33, 17 (1981) Google Scholar

  • [8] S. Murata, M. Nishimura, S.Y. Matsuzaki, M. Tachiya, Chem. Phys. Lett. 219, 200 (1994) http://dx.doi.org/10.1016/0009-2614(94)87045-4CrossrefGoogle Scholar

  • [9] P. Suppan, Chem. Phys. Lett. 3, 94, 272 (1983) http://dx.doi.org/10.1016/0009-2614(83)87086-9CrossrefGoogle Scholar

  • [10] S. Nad, M. Kumbarkar, H. Pal, J. Phys. Chem. A 107, 4808 (2003) Google Scholar

  • [11] A. Kawski, Z. Natuforsch. 54A, 379 (1991) Google Scholar

  • [12] R. Giri, M.M. Bajaj, Curr. Sci. 62, 522 (1992) Google Scholar

  • [13] A. Samanth, W.E. Richard, J. Phys. Chem. A 104, 8972 (2000) Google Scholar

  • [14] H. Kolodziej, O. Kayser, H.J. Woerdenbag, W. Van Ulden, N. Pras, Naturforchung 52, 240 (1997) Google Scholar

  • [15] F.A. Jimenez-Orozco, J.A. Molina-Guarneros, N. Mendoza-Patino, F. Leon-Cedeno, B. Flores-Perez, E. Santos-Santos, J.J. Mandoki, Melanoma Res. 9, 243 (1999) http://dx.doi.org/10.1097/00008390-199906000-00005CrossrefGoogle Scholar

  • [16] G.J. Finn, B.S. Creaven, D.A. Egan, Melanoma Res. 11, 461 (2001) http://dx.doi.org/10.1097/00008390-200110000-00004CrossrefGoogle Scholar

  • [17] P. Laurin, M. Klich, C. Dupis-Hamelin, P. Mauvais, P. Lassaigne, A. Bonnefoy, B. Musicki, Bioorg. Med. Chem. Lett. 9, 2079 (1999) http://dx.doi.org/10.1016/S0960-894X(99)00329-7CrossrefGoogle Scholar

  • [18] R.J.S. Hoult, M. Paya, Gen. Pharmacol. 27, 713 (1996) Google Scholar

  • [19] B. Thati, A. Noble, B. S. Creaven, M. Walsh, M. McCann, K. Kavanagh, M. Devereux, D. A. Egan, Cancer Letters 248, 321 (2007) http://dx.doi.org/10.1016/j.canlet.2006.08.009CrossrefGoogle Scholar

  • [20] A. Varlan, M. Hillebrand, Rev. Roum. Chim. 55(1), 69 (2010) Google Scholar

  • [21] A. Varlan, M. Hillebrand, Molecules 15, 3905 (2010) http://dx.doi.org/10.3390/molecules15063905CrossrefGoogle Scholar

  • [22] T. Otosu, E. Nishimoto, S. Yamashita, J. Biochem. 147, 191 (2010) http://dx.doi.org/10.1093/jb/mvp175CrossrefGoogle Scholar

  • [23] J.R. Lakowicz, G. Weber, Biochemistry 12, 4161 (1973) http://dx.doi.org/10.1021/bi00745a020CrossrefGoogle Scholar

  • [24] M.R. Eftink, C.A. Ghiron, Anal. Biochem. 114, 199 (1981) http://dx.doi.org/10.1016/0003-2697(81)90474-7CrossrefGoogle Scholar

  • [25] J. Steinhardt, J. Krijn, J.G. Leidy, Biochemistry 10, 4005 (1971) http://dx.doi.org/10.1021/bi00798a001CrossrefGoogle Scholar

  • [26] H.X. Zhang, X. Huang, P. Mei, K.H. Li, C.N. Yan, J. Fluoresc. 16, 287 (2006) http://dx.doi.org/10.1007/s10895-006-0087-7CrossrefGoogle Scholar

  • [27] H.X. Zhang, X. Huang, P. Mei, S. Gao, J. Solution Chem. 37, 631 (2008) http://dx.doi.org/10.1007/s10953-008-9268-0CrossrefGoogle Scholar

  • [28] G. Scatchard, Ann. N.Y. Acad. Sci. 51, 660 (1949) http://dx.doi.org/10.1111/j.1749-6632.1949.tb27297.xCrossrefGoogle Scholar

  • [29] M. van de Weert, J. Fluoresc, 20, 625 (2010) http://dx.doi.org/10.1007/s10895-009-0572-xCrossrefGoogle Scholar

  • [30] J.N. Tian, J.Q. Liu, W.Y. He, Z.D. Hu, X.J. Yao, X.G. Cheng, Biomacromolecules 5, 1956 (2004) http://dx.doi.org/10.1021/bm049668mCrossrefGoogle Scholar

  • [31] D.P. Ross, S. Subramanian, Biochemistry 20, 3096 (1981) http://dx.doi.org/10.1021/bi00514a017CrossrefGoogle Scholar

  • [32] Y. Sun, H. Zhang, Y. Sun, Y. Zhang, H. Liu, J. Cheng, S. Bi, H. Zhang, J. Lumin. 130, 270 (2010) http://dx.doi.org/10.1016/j.jlumin.2009.09.002CrossrefGoogle Scholar

  • [33] S. Ashoka, J. Seetharamappa, P.B. Kankagal, S.M.T. Shaikh, J. Lumin. 121, 179 (2006) http://dx.doi.org/10.1016/j.jlumin.2005.12.001CrossrefGoogle Scholar

  • [34] M.A. Khan, S. Muzammil, J. Musarrat, Int. J. Biol. Macromol. 30, 243 (2002) http://dx.doi.org/10.1016/S0141-8130(02)00038-7CrossrefGoogle Scholar

  • [35] G. Sudlow, D.J. Birkett, D.N. Wade, Mol. Pharmacol. 12,1052 (1976) Google Scholar

  • [36] I. Sjoholm, B. Ekman, A. Kober, I. Ljungstedt-Pahlman, B. Seiving, T. Sjodin, Mol. Pharmacol. 16, 767 (1979) Google Scholar

  • [37] G. Sudlow, D.J. Birkett, D.N. Wade, Mol. Pharmacol. 11, 824 (1975) Google Scholar

  • [38] S. Wanwimolruk, D.J. Birkett, P.M. Brooks, Mol. Pharmacol. 24, 458 (1983) Google Scholar

  • [39] U.K. Hansen, F. Hellec, B. de Foresta, M.L. Maire, J.V. Moller, Biophys. J. 80, 2898 (2001) http://dx.doi.org/10.1016/S0006-3495(01)76255-8CrossrefGoogle Scholar

  • [40] K.R. Grigoryan, M.G. Aznauryan, N.A. Bagramyan, L.G. Gevorkyan, S.A. Markaryan, J. Appl. Spectrosc. 75(4), 593 (2008) http://dx.doi.org/10.1007/s10812-008-9070-1CrossrefGoogle Scholar

  • [41] J.-L. Yuan, Z. lv, Z.-G. Liu, Z. Hu, G.-L. Zou, J. Photochem. Photobiol. A, 191, 104 (2007) http://dx.doi.org/10.1016/j.jphotochem.2007.04.010CrossrefGoogle Scholar

  • [42] S. Bi, D. Song, Y. Tian, X. Zhou, Z. Liu, H. Zhang, Spectrochim. Acta Part A 61, 629 (2005) http://dx.doi.org/10.1016/j.saa.2004.05.028CrossrefGoogle Scholar

  • [43] Y.J. Hu, Y. Liu, J.B. Wang, X.H. Xiao, S.S. Qu, J. Pharm. Biomed. Anal. 36, 915 (2004) http://dx.doi.org/10.1016/j.jpba.2004.08.021CrossrefGoogle Scholar

  • [44] B. Valeur, J. C. Brochon, New trends in fluorescence spectroscopy (Springer Press, Berlin, 1999) Google Scholar

  • [45] S. Deepa, A.K. Mishra, J. Pharm. Biomed. Anal. 38, 556 (2005) http://dx.doi.org/10.1016/j.jpba.2005.01.023CrossrefGoogle Scholar

  • [46] J. Liu, J. Tian, J. Zhang, Z. Hu, Anal. Bioanal. Chem. 376, 864 (2003) http://dx.doi.org/10.1007/s00216-003-1964-4CrossrefGoogle Scholar

  • [47] P.B. Kandagal, S. Ashoka, J. Seetharamappa, S.M.T. Shaikh, Y. Jadegoud, O.B. Ijare, J. Pharm. Biomed. 41, 393 (2006) http://dx.doi.org/10.1016/j.jpba.2005.11.037CrossrefGoogle Scholar

  • [48] M.H. Rahman, T. Maruyama, T. Okaka, K. Yamasaki, M. Otagiri, Biochem. Pharmacol. 46, 1721 (1993) http://dx.doi.org/10.1016/0006-2952(93)90576-ICrossrefGoogle Scholar

About the article

Published Online: 2011-06-04

Published in Print: 2011-08-01


Citation Information: Open Chemistry, Volume 9, Issue 4, Pages 624–634, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0043-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eduardo Palao, Tomáš Slanina, Lucie Muchová, Tomáš Šolomek, Libor Vítek, and Petr Klán
Journal of the American Chemical Society, 2016, Volume 138, Number 1, Page 126
[2]
Yangyang Chen, Ying Liu, Xiaoxi Li, Juan Zhang, and Genxi Li
Food Biophysics, 2015, Volume 10, Number 3, Page 264
[4]
Priyanka Bolel, Niharendu Mahapatra, and Mintu Halder
Journal of Agricultural and Food Chemistry, 2012, Volume 60, Number 14, Page 3727
[5]
Cristina Tablet, Iulia Matei, Elena Pincu, Viorica Meltzer, and Mihaela Hillebrand
Journal of Molecular Liquids, 2012, Volume 168, Page 47

Comments (0)

Please log in or register to comment.
Log in