Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 9, Issue 5

Issues

Volume 13 (2015)

QSAR modeling of anxiolytic activity taking into account the presence of keto- and enol-tautomers by balance of correlations with ideal slopes

Alla. Toropova / Andrey Toropov / Emilio Benfenati / Giuseppina Gini / Danuta Leszczynska
  • Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS, 39217-0510, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Leszczynski
  • Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-07-24 | DOI: https://doi.org/10.2478/s11532-011-0064-0

Abstract

Optimal descriptors calculated with simplified molecular input line entry system (SMILES) have been examined as a tool for prediction of anxiolytic activity. Descriptors calculated with SMILES (a) of keto-isomers; (b) of enol-isomers; and (c) of both keto-isomers together with enol-isomers have been studied. Three approaches have been compared: 1. classic’ training-test’ system 2. balance of correlations and 3. balance of correlations with ideal slopes. The best statistical characteristics for the external validation set took place for optimal descriptors calculated with SMILES of both keto-form and enol-form (i.e., molecular structure was represented in the format: ’sMILES of keto-form. SMILES of enol-form’) by means of balance of correlations with ideal slopes. The predictive potential of this model was checked with three random splits.

Keywords: QSAR; SMILES; Tautomerism; Anxiolytic activity; Balance of correlation

  • [1] J. W. Zou, C.C. Luo, H-X. Zhang, J. Mol. Graph. Model. 26, 494 (2007) http://dx.doi.org/10.1016/j.jmgm.2007.03.002CrossrefGoogle Scholar

  • [2] P.P. Roy, K. Roy, QSAR Comb Sci. 27, 302 (2008) http://dx.doi.org/10.1002/qsar.200710043CrossrefGoogle Scholar

  • [3] A.A. Toropov, A.P. Toropova, E. Benfenati, Eur. J. Med. Chem. 45, 3581(2010) http://dx.doi.org/10.1016/j.ejmech.2010.05.002CrossrefGoogle Scholar

  • [4] P.R. Duchowicz, A. Talevi, L.E. Bruno-Blanch, E.A. Castro, Bioorg Med Chem. 16, 7944 (2008) http://dx.doi.org/10.1016/j.bmc.2008.07.067CrossrefGoogle Scholar

  • [5] A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, O. Igglessi-Markopoulou, QSAR Comb Sci. 25, 928 (2006) http://dx.doi.org/10.1002/qsar.200530208CrossrefGoogle Scholar

  • [6] A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, O. Igglessi-Markopoulou, Polymer 47, 3240 (2006) http://dx.doi.org/10.1016/j.polymer.2006.02.060CrossrefGoogle Scholar

  • [7] T. Puzyn, N. Suzuki, M. Haranczyk, J. Rak, J. Chem. Inform. Model. 48, 1174 (2008) http://dx.doi.org/10.1021/ci800021pCrossrefGoogle Scholar

  • [8] A.A. Toropov, B.F. Rasulev, D. Leszczynska, J. Leszczynski, Chem. Phys. Lett. 444, 209 (2007) http://dx.doi.org/10.1016/j.cplett.2007.07.024CrossrefGoogle Scholar

  • [9] A.A. Toropov, B.F. Rasulev, J. Leszczynski, Bioorg. Med. Chem. 16, 5999 (2008) http://dx.doi.org/10.1016/j.bmc.2008.04.055CrossrefGoogle Scholar

  • [10] C. Zhao, E. Boriani, A. Chana, A. Roncaglioni, E. Benfenati, Chemosphere 73, 1701 (2008) http://dx.doi.org/10.1016/j.chemosphere.2008.09.033CrossrefGoogle Scholar

  • [11] G. Gini, E. Benfenati, Int. J. Artif. Intell. T. 16, 243 (2007) http://dx.doi.org/10.1142/S0218213007003308CrossrefGoogle Scholar

  • [12] A.A. Toropov, A.P. Toropova, E. Benfenati, Eur. J. Med. Chem. 44, 2544 (2009) http://dx.doi.org/10.1016/j.ejmech.2009.01.023CrossrefGoogle Scholar

  • [13] A.A. Toropov, A.P. Toropova, E. Benfenati, Int. J. Mol. Sci. 10, 3106 (2009) http://dx.doi.org/10.3390/ijms10073106CrossrefGoogle Scholar

  • [14] A.A. Toropov, A.P. Toropova, J. Mol. Struct. (Theochem). 578, 129 (2002) http://dx.doi.org/10.1016/S0166-1280(01)00695-9CrossrefGoogle Scholar

  • [15] A.A. Toropov, E. Benfenati, Bioorg. Med. Chem. 14, 3923 (2006) http://dx.doi.org/10.1016/j.bmc.2006.01.038CrossrefGoogle Scholar

  • [16] A.A. Toropov, A.P. Toropova, E. Benfenati, Eur. J. Med. Chem. 45, 3581 (2010) http://dx.doi.org/10.1016/j.ejmech.2010.05.002CrossrefGoogle Scholar

  • [17] A.P. Toropova, A.A. Toropov, E. Benfenati, D. Leszczynska, J. Leszczynski, J. Math. Chem. 48, 959 (2010) http://dx.doi.org/10.1007/s10910-010-9719-xCrossrefGoogle Scholar

  • [18] D. Weininger, J. Chem. Inf. Comput. Sci. 28, 31 (1988) CrossrefGoogle Scholar

  • [19] D. Weininger, A. Weininger, J.L. Weininger, J. Chem. Inf. Comput. Sci. 29, 97 (1989) CrossrefGoogle Scholar

  • [20] D. Weininger, J. Chem. Inf. Comput. Sci. 30, 237 (1990) CrossrefGoogle Scholar

  • [21] A.A. Toropov, A.P. Toropova, E. Benfenati, Mol. Divers. 14, 183 (2010) http://dx.doi.org/10.1007/s11030-009-9156-6CrossrefGoogle Scholar

  • [22] B. Xia, W. Ma, B. Zheng, X. Zhang, B. Fan, Eur. J. Med. Chem. 43, 1489 (2008) http://dx.doi.org/10.1016/j.ejmech.2007.09.004CrossrefGoogle Scholar

  • [23] M.P. Freitas, Chemometr. Intell. Lab. 91, 173 (2008) CrossrefGoogle Scholar

  • [24] M.P. Freitasa, S.D. Brownb, J.A. Martinsa, J. Mol. Struct. 738, 149 (2005) http://dx.doi.org/10.1016/j.molstruc.2004.11.065CrossrefGoogle Scholar

  • [25] B. Costa, E. Da Pozzo, B. Chelli, N. Simola, M. Morelli, M. Luisi, M. Maccheroni, S. Taliani, F. Simorini, F. Da Settimo, C. Martini, Psychoneuroendocrino 36, 463 (2011) http://dx.doi.org/10.1016/j.psyneuen.2010.07.021CrossrefGoogle Scholar

  • [26] O. Grundmann, J-I. Nakajima, K. Kamata, S. Seo, V. Butterweck, Phytomedicine 16, 295 (2009) http://dx.doi.org/10.1016/j.phymed.2008.12.020CrossrefGoogle Scholar

  • [27] E. Ognibene, P. Bovicelli, W. Adriani, L. Saso, G. Laviola, Prog. Neuro-Psychoph. 32, 128 (2008) http://dx.doi.org/10.1016/j.pnpbp.2007.07.023CrossrefGoogle Scholar

  • [28] A. Zamilpa, M. Herrera-Ruiz, E. Del Olmo, J.L. Lopez-Pe’rez, J. Tortoriello, A. San Feliciano, Bioorg. Med. Chem. Lett. 17, 4016 (2007) http://dx.doi.org/10.1016/j.bmcl.2007.04.080CrossrefGoogle Scholar

About the article

Published Online: 2011-07-24

Published in Print: 2011-10-01


Citation Information: Open Chemistry, Volume 9, Issue 5, Pages 846–854, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0064-0.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alla P. Toropova, Andrey A. Toropov, Emilio Benfenati, Danuta Leszczynska, and Jerzy Leszczynski
Bioorganic & Medicinal Chemistry, 2015, Volume 23, Number 6, Page 1223
[2]
Guillermo M. Chans, E. Laura Moyano, and María Teresa Baumgartner
Journal of Molecular Structure, 2014, Volume 1059, Page 176
[3]
Andrey A. Toropov, Alla P. Toropova, Emilio Benfenati, Giuseppina Gini, and Roberto Fanelli
Structural Chemistry, 2013, Volume 24, Number 4, Page 1369
[4]
Alla P. Toropova, Andrey A. Toropov, Emilio Benfenati, Giuseppina Gini, Danuta Leszczynska, and Jerzy Leszczynski
Chemometrics and Intelligent Laboratory Systems, 2012, Volume 118, Page 70

Comments (0)

Please log in or register to comment.
Log in