Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 9, Issue 5

Issues

Volume 13 (2015)

Trace detection of inorganic oxidants using desorption electrospray ionization (DESI) mass spectrometry

Ewa Sokol / Ayanna Jackson / R. Cooks
Published Online: 2011-07-24 | DOI: https://doi.org/10.2478/s11532-011-0065-z

Abstract

Desorption electrospray ionization (DESI), an established ambient ionization method in mass spectrometry (MS) for the analysis of organic compounds, is applied here to trace detection of inorganic salts, including inorganic oxidants. In-situ surface analysis of targeted compounds, including nitrogen-, halogen- and sulfur-salts, down to sub-nanogram levels, was performed using DESI-MS. Successful experiments were carried out in both the negative and the positive ion modes; simple anions and cations as well as small cluster ions were observed. Various surfaces are examined and surface porosity effects were briefly explored. Absolute detection limits on porous polytetrafluoroethylene (PTFE) of 120 pg (surface concentration 0.07 ng mm−2) and 50 pg (surface concentration 0.03 ng mm−2), were achieved for sodium chlorate and sodium perchlorate, respectively. The compounds of interest were examined in the presence of a hydrocarbon mixture to assess matrix effects: only a two- or three-fold decrease in the target ion intensity was observed. Commercial fireworks were analyzed to determine perchlorate salts in complex mixtures. This work demonstrates the potential applicability of ambient ionization mass spectrometry to forensic investigations involving improvised explosives.

Keywords: Perchlorate and chlorate ions; DESI MS; Ambient ionization methods; Oxidants; Explosives

  • [1] D. Royds, S.W. Lewis, A.M. Taylor, Talanta 67, 262 (2005) http://dx.doi.org/10.1016/j.talanta.2005.03.026CrossrefGoogle Scholar

  • [2] U.S. Department of the Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), Federal Register, 75, 70291 (2010) Google Scholar

  • [3] J. Akhavan (Ed.), In: The Chemistry of Explosives, 2nd edition (The Royal Society of Chemistry, Cambridge, 2004) 21 Google Scholar

  • [4] J. Yinon, Mass Spectrom. Rev. 3, 257 (1982) http://dx.doi.org/10.1002/mas.1280010304CrossrefGoogle Scholar

  • [5] J.C. Oxley, Proc. SPIE 2511, 217 (1995) http://dx.doi.org/10.1117/12.219597CrossrefGoogle Scholar

  • [6] J.I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998) http://dx.doi.org/10.1146/annurev.physchem.49.1.203CrossrefGoogle Scholar

  • [7] G.W. Dicinoski, R.A. Shellie, P.R. Haddad, Anal. Lett. 39, 639 (2006) http://dx.doi.org/10.1080/00032710600609735CrossrefGoogle Scholar

  • [8] D.K. Kuila, A. Chakrabortty, S.P. Sharma, S.C. Lahiri, Forensic Sci. Int. 159, 127 (2006) http://dx.doi.org/10.1016/j.forsciint.2005.06.012CrossrefGoogle Scholar

  • [9] M.C. Green, L.D. Partain, Proc. SPIE-Int. Soc. Opt. Eng. 5048, 63 (2003) Google Scholar

  • [10] S.P. Sharma, S.C. Lahiri, J. Energy Mater. 23, 239 (2005) http://dx.doi.org/10.1080/07370650591006795CrossrefGoogle Scholar

  • [11] M. Pumera, Electrophoresis 27, 244 (2006) http://dx.doi.org/10.1002/elps.200500609CrossrefGoogle Scholar

  • [12] F. Tagliaro, F. Bortolotti, Electrophoresis 29, 260 (2008) http://dx.doi.org/10.1002/elps.200700708CrossrefGoogle Scholar

  • [13] G.W. Dicinoski, R.A. Shellie, P.R. Haddad, Anal. Lett. 39, 639 (2006) http://dx.doi.org/10.1080/00032710600609735CrossrefGoogle Scholar

  • [14] K.G. Hopper, H. LeClair, B.R. McCord, Talanta 67, 304 (2005) http://dx.doi.org/10.1016/j.talanta.2005.01.037CrossrefGoogle Scholar

  • [15] M. Pumera, Electrophoresis 29, 269 (2008) http://dx.doi.org/10.1002/elps.200700394CrossrefGoogle Scholar

  • [16] J.P. Hutchinson, C. Johns, M.C. Breadmore, E.F. Hilder, R.M. Guijt, C. Lennard, G. Dicinoski, P.R. Haddad, Electrophoresis 29, 4593 (2008) http://dx.doi.org/10.1002/elps.200800226CrossrefGoogle Scholar

  • [17] M. Ryvolová, J. Preisler, D. Brabazon, M. Macka, Trends Anal. Chem. 29, 339 (2010) http://dx.doi.org/10.1016/j.trac.2009.12.010CrossrefGoogle Scholar

  • [18] M.L. Magnuson, E.T. Urbansky, C.A. Kelty, Talanta 52, 285 (2000) http://dx.doi.org/10.1016/S0039-9140(00)00342-8CrossrefGoogle Scholar

  • [19] X. Zhao, J. Yinon, Rapid Commun. Mass Spectrom. 15, 1514 (2001) http://dx.doi.org/10.1002/rcm.406CrossrefGoogle Scholar

  • [20] X. Zhao, J. Yinon, Rapid Commun. Mass Spectrom. 16, 1137 (2002) http://dx.doi.org/10.1002/rcm.692CrossrefGoogle Scholar

  • [21] R.J. Soukup-Hein, J.W. Remsburg, P.K. Dasgupta, D.W. Armstrong, Anal. Chem. 79, 7346 (2007) http://dx.doi.org/10.1021/ac071102bCrossrefGoogle Scholar

  • [22] A. Dudoit, S.A. Pergantis, J. Anal. At. Spectrom. 16, 575 (2001) http://dx.doi.org/10.1039/b100783lCrossrefGoogle Scholar

  • [23] G.N. Hebert, M.A. Odom, S.C. Bowman, S.H. Strauss, Anal. Chem. 76, 781 (2004) http://dx.doi.org/10.1021/ac034915iCrossrefGoogle Scholar

  • [24] M.F. Bergamini, D.P. dos Santos, M.V. Boldrin Zanoni, Sens. Actuators B 123, 902 (2007) http://dx.doi.org/10.1016/j.snb.2006.10.062CrossrefGoogle Scholar

  • [25] I. Svancara, P. Foret, K. Vytras, Talanta 64, 844 (2004) http://dx.doi.org/10.1016/j.talanta.2004.03.062CrossrefGoogle Scholar

  • [26] J. Almog, S. Kraus, B. Glattstein, J. Energetic Materials 4, 159 (1986) http://dx.doi.org/10.1080/07370658608011339CrossrefGoogle Scholar

  • [27] Z. Takats, J.M. Wiseman, R.G. Cooks, J. Mass Spectrom. 40, 1261 (2005) http://dx.doi.org/10.1002/jms.922CrossrefGoogle Scholar

  • [28] R.G. Cooks, Z. Ouyang, Z. Takats, J.M. Wiseman, Science 311, 1566 (2006) http://dx.doi.org/10.1126/science.1119426CrossrefGoogle Scholar

  • [29] Y.-S. Shin, B. Drolet, R. Mayer, K. Dolence, F. Basile, Anal. Chem. 79, 3514 (2007) http://dx.doi.org/10.1021/ac062451tCrossrefGoogle Scholar

  • [30] A. Venter, M. Nefliu, R.G. Cooks, Trends Anal. Chem. 27, 284 (2008) http://dx.doi.org/10.1016/j.trac.2008.01.010CrossrefGoogle Scholar

  • [31] G.J. Van Berkel, S.P. Pasilis, O. Ovchinnikova, J. Mass Spectrom. 43, 1161 (2008) http://dx.doi.org/10.1002/jms.1440CrossrefGoogle Scholar

  • [32] D.J. Weston, Analyst 135, 661 (2010) http://dx.doi.org/10.1039/b925579fCrossrefGoogle Scholar

  • [33] M.Z. Huang, C.H. Yuan, S.C. Cheng, Y.T. Cho, J. Shiea, Annu. Rev. Anal. Chem. 3, 43 (2010) http://dx.doi.org/10.1146/annurev.anchem.111808.073702CrossrefGoogle Scholar

  • [34] C. Przybylski, F. Gonnet, Y. Hersant, D. Bonnaffé, H. Lortat-Jacob H, R. Daniel, Anal. Chem. 82, 9225 (2010) http://dx.doi.org/10.1021/ac1016198CrossrefGoogle Scholar

  • [35] F.M. Green, T.L. Salter, P. Stokes, I.S. Gilmore, G. O’Connor, Surf. Interface Anal. 42, 347 (2010) http://dx.doi.org/10.1002/sia.3131CrossrefGoogle Scholar

  • [36] F. Basile, T. Sibray, J. Belisle, R. Bowen, Anal. Biochem. 408, 289 (2010) http://dx.doi.org/10.1016/j.ab.2010.09.017CrossrefGoogle Scholar

  • [37] S.P. Pasilis, V. Kertesz, G.J. Van Berkel, Anal. Chem. 79, 5956 (2007) http://dx.doi.org/10.1021/ac070527vCrossrefGoogle Scholar

  • [38] G. Wang, R.B. Cole, Anal. Chem. 70, 873 (1998) http://dx.doi.org/10.1021/ac970919+CrossrefGoogle Scholar

  • [39] B. Siroka, M. Noisternig, U.J. Griesser, T. Bechtold, Carbohydr. Res. 343, 2194 (2008) http://dx.doi.org/10.1016/j.carres.2008.01.037CrossrefGoogle Scholar

  • [40] S. Amico, C. Lekakou, Compos. Part A — Appl. Sci. 31, 1331 (2000) http://dx.doi.org/10.1016/S1359-835X(00)00033-6CrossrefGoogle Scholar

  • [41] I. Holme, Int. J. Adhesion Adhesives 19, 455 (1999) http://dx.doi.org/10.1016/S0143-7496(99)00025-1CrossrefGoogle Scholar

  • [42] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997) http://dx.doi.org/10.1038/39827CrossrefGoogle Scholar

  • [43] C.E. Aziz, R. Borch, P. Nicholson, E. Cox, In: B. Gu, J.D. Coates (Eds.), Perchlorate Environmental Occurrence, Interactions and Treatment (Springer, New York, 2006) 76 Google Scholar

  • [44] V. Kertesz, G.J. Van Berkel, M. Vavrek, K.A. Koeplinger, B.B. Schneider, T.R. Covey, Anal. Chem. 80, 5168 (2008) http://dx.doi.org/10.1021/ac800546aCrossrefGoogle Scholar

  • [45] A.L. Dill, L.S. Eberlin, D.R. Ifa, R.G. Cooks, Chem. Comm. (in press) Google Scholar

About the article

Published Online: 2011-07-24

Published in Print: 2011-10-01


Citation Information: Open Chemistry, Volume 9, Issue 5, Pages 790–797, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0065-z.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Robert G. Ewing, Blandina R. Valenzuela, David A. Atkinson, and Eric D. Wilcox Freeburg
Analytical Chemistry, 2018
[2]
Elzbieta Gurdak, Felicia M. Green, Paulina D. Rakowska, Martin P. Seah, Tara L. Salter, and Ian S. Gilmore
Analytical Chemistry, 2014, Volume 86, Number 19, Page 9603
[3]
Carlos Martín-Alberca, Ma Ángeles Fernández de la Ossa, Jorge Sáiz, José Luis Ferrando, and Carmen García-Ruiz
ELECTROPHORESIS, 2014, Volume 35, Number 21-22, Page 3272
[4]
Robert B. Cody and A. John Dane
Rapid Communications in Mass Spectrometry, 2014, Volume 28, Number 8, Page 893
[5]
Carlos Martín-Alberca and Carmen García-Ruiz
TrAC Trends in Analytical Chemistry, 2014, Volume 56, Page 27
[7]
María Eugenia Monge, Glenn A. Harris, Prabha Dwivedi, and Facundo M. Fernández
Chemical Reviews, 2013, Volume 113, Number 4, Page 2269

Comments (0)

Please log in or register to comment.
Log in