Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 10, Issue 1


Volume 13 (2015)

Low temperature synthesis of cubic phase zinc sulfide quantum dots

Robina Shahid / Muhammet Toprak / Hesham Soliman / Mamoun Muhammed
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0108-5


In this study, we report on a new method for the synthesis of ZnS quantum dots (QDs). The synthesis was carried out at low temperature by a chemical reaction between zinc ions and freshly reduced sulfide ions in ethanol as reaction medium. Zinc chloride and elemental sulfur were used as zinc and sulfur sources, respectively and hydrazine hydrate was used as a strong reducing agent to convert elemental sulfur (S8) into highly reactive sulfide ions (S2−) which react spontaneously with zinc ions. This facile, less toxic, inexpensive route has a high yield for the synthesis of high quality metal sulfide QDs. Transmission electron microscopy (TEM) image analysis and selected area electron diffraction (SAED) reveal that ZnS QDs are less than 3 nm in diameter and are of cubic crystalline phase. The UV-Vis absorption spectrum shows an absorption peak at 253 nm corresponding to a band gap of 4.9 eV, which is high when compared to the bulk value of 3.68 eV revealing strong quantum confinement. PL emission transitions are observed at 314 nm and 439 nm and related to point defects in ZnS QDs.

Keywords: ZnS; Quantum Dots; Hydrazine Hydrate; Photoluminescence; Microwave

  • [1] A.P. Alivisatos, Science 271, 933 (1996) http://dx.doi.org/10.1126/science.271.5251.933CrossrefGoogle Scholar

  • [2] W. Liu Mater. Lett. 60, 551 (2006) http://dx.doi.org/10.1016/j.matlet.2005.09.033CrossrefGoogle Scholar

  • [3] P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, J. Lumin. 93, 101 (2001) http://dx.doi.org/10.1016/S0022-2313(01)00186-7CrossrefGoogle Scholar

  • [4] J.H. Park, S.H. Lee, J.S. Kim, A.K. Kwon, H.L. Park, S.D. Han, J. Lumin. 126, 566 (2007) http://dx.doi.org/10.1016/j.jlumin.2006.10.012CrossrefGoogle Scholar

  • [5] J.M. Hwang, M.O. Oh, I. Kim, J.K. Lee, C.S. Ha, Curr. Appl Phys. 5, 31 (2005) http://dx.doi.org/10.1016/j.cap.2003.11.075CrossrefGoogle Scholar

  • [6] N. Fathy, M. Ichimura, Sol. Energy Mater. Sol. Cells 87, 747 (2005) http://dx.doi.org/10.1016/j.solmat.2004.07.048CrossrefGoogle Scholar

  • [7] H.Z. Zeng, K.Q. Qiu, Y.Y. Du, W.Z. Li, Chin. Chem. Lett. 18, 483 (2007) http://dx.doi.org/10.1016/j.cclet.2007.02.002CrossrefGoogle Scholar

  • [8] Y. Li, Y. Ding, Y. Zhang, Y. Qian, J. Phys. Chem. Solids 60, 13 (1999) http://dx.doi.org/10.1016/S0022-3697(98)00247-9CrossrefGoogle Scholar

  • [9] M. Jayalakshmi, M.M. Rao, J. Power Sources 157, 624 (2006) http://dx.doi.org/10.1016/j.jpowsour.2005.08.001CrossrefGoogle Scholar

  • [10] Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis, J.Q. Xiao, J. Am. Chem. Soc. 126, 6874 (2004) http://dx.doi.org/10.1021/ja048650gCrossrefGoogle Scholar

  • [11] L.P. Wang, G.Y. Hong, Mater. Res. Bull. 35, 695(2000) http://dx.doi.org/10.1016/S0025-5408(00)00261-0CrossrefGoogle Scholar

  • [12] J. Zhu, M. Zhou, J. Xu, X. Liao, Mater. Lett. 47, 25 (2001) http://dx.doi.org/10.1016/S0167-577X(00)00206-8CrossrefGoogle Scholar

  • [13] J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125, 11100 (2003) http://dx.doi.org/10.1021/ja0357902CrossrefGoogle Scholar

  • [14] D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys. 84, 2841 (1998) http://dx.doi.org/10.1063/1.368425CrossrefGoogle Scholar

  • [15] V.T. Liveri, M. Rossi, G.D. Arrigo, D. Manno, G. Micocci, Appl. Phys. A 69, 369 (1999) http://dx.doi.org/10.1007/s003390051016CrossrefGoogle Scholar

  • [16] G.Z. Wang, B.Y. Geng, X.M. Huang, Y.W. Wang, G.H. Li, L.D. Zhang, Appl. Phys. A 77, 933 (2003) http://dx.doi.org/10.1007/s00339-002-2033-0CrossrefGoogle Scholar

  • [17] J.Q. Sun, X.P. Shen, K.M. Chen, Q. Liu, W. Liu, Solid State Commun. 147, 501 (2008) http://dx.doi.org/10.1016/j.ssc.2008.06.041CrossrefGoogle Scholar

  • [18] J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228 (2007) http://dx.doi.org/10.1021/cr050943kCrossrefGoogle Scholar

  • [19] H. Tang, G. Xu, L. Weng, L. Pan, L. Wang, Acta Mater. 52, 1489 (2004) http://dx.doi.org/10.1016/j.actamat.2003.11.030CrossrefGoogle Scholar

  • [20] L. Brus, J. Phys. Chem. 90, 2555 (1986) http://dx.doi.org/10.1021/j100403a003CrossrefGoogle Scholar

  • [21] A.E. Raevskaya, A.V. Korzhak, A.L. Stroyuk, S.Y. Kuchmii, Theor. Exp. Chem. 41, 111 (2005) http://dx.doi.org/10.1007/s11237-005-0029-5CrossrefGoogle Scholar

  • [22] N. Revaprasadu, J. Mater. Res. 14, 3237 (1999) http://dx.doi.org/10.1557/JMR.1999.0437CrossrefGoogle Scholar

  • [23] W.T. Yao, S.H. Yu, Q.S. Wu, Adv. Funct. Mater. 17, 623 (2007) http://dx.doi.org/10.1002/adfm.200600239CrossrefGoogle Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01

Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 54–58, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0108-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

David Magalhães Sousa, Luís Cerqueira Alves, Ana Marques, Guilherme Gaspar, João Carlos Lima, and Isabel Ferreira
Scientific Reports, 2018, Volume 8, Number 1
N. A. Lapatin, M. V. Puzyk, and V. N. Pak
Russian Journal of General Chemistry, 2018, Volume 88, Number 6, Page 1210
Jeremy R. Eskelsen, Jie Xu, Michelle Chiu, Ji-Won Moon, Branford Wilkins, David E. Graham, Baohua Gu, and Eric M. Pierce
Environmental Science & Technology, 2018
Angela J. Murray, Jimmy Roussel, John Rolley, Frankie Woodhall, Iryna P. Mikheenko, D. Barrie Johnson, Jaime Gomez-Bolivar, Mohamed L. Merroun, and Lynne E. Macaskie
RSC Adv., 2017, Volume 7, Number 35, Page 21484
Yu. V. Kuznetsova, A. A. Kazantseva, and A. A. Rempel
Russian Journal of Physical Chemistry A, 2016, Volume 90, Number 4, Page 864
Yuan-Peng Zhang, Wei Liu, Bao-Dan Liu, and Rong-Ming Wang
Rare Metals, 2014, Volume 33, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in