Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Coordination properties of N,O-carboxymethyl chitosan (NOCC). Synthesis and equilibrium studies of some metal ion complexes. Ternary complexes involving Cu(II) with (NOCC) and some biorelevant ligand

Azza Shoukry / Wafaa Hosny
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0116-5

Abstract

In the present study, the acid-base equilibria of N,O-carboxymethy chitosan abbreviated as (NOCC), is investigated. The complex formation equilibria with the metal ions Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) are investigated potentiometrically. The stability constant values of the binary and ternary complexes formed in solution were determined and the binding centers of the ligands were assigned. The relationships between the properties of the studied central metal ions as ionic radius, electronegativity, atomic number, and ionization potential, and the stability constants of the formed complexes were investigated in an effort to give information about the nature of chemical bonding in complexes and make possible the calculation of unknown stability constants. Cu(II), Ni(II), and U(VI) complexes with NOCC are isolated as solid complexes and characterized by conventional chemical and physical methods. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies. The ternary copper(II) complexes involving NOCC and various biologically relevant ligands containing different functional groups, as amino acids and DNA constituents are investigated. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated.

Keywords: N,O-Carboxymethyl chitosan (NOCC); Metal complexes; Potentiometry; IR spectroscopy

  • [1] X. Wang, Y. Du, L. Fan, H. Liu, Y. Hu, Polymer Bulletin. 55, 105 (2005) http://dx.doi.org/10.1007/s00289-005-0414-1CrossrefGoogle Scholar

  • [2] C.J. Brine, P.A. Sandford, J.P. Zikakis, Advanced chitin and chitosan (Elsevier, London, 1992) Google Scholar

  • [3] R. Huang, Y. Du, J. Yang, Carbohydr. Polym. 51, 431 (2003) http://dx.doi.org/10.1016/S0144-8617(02)00208-4CrossrefGoogle Scholar

  • [4] C. Qin, Y. Du, L. Xiao, Z. Li, X. Gao, Int. J. Biol. Macromol. 31, 111(2002) http://dx.doi.org/10.1016/S0141-8130(02)00064-8CrossrefGoogle Scholar

  • [5] C. Qin, B. Zhou, L. Zeng, Z. Zhang, Y. Liu, Y. Du, L. Xiao, Food Chem. 84, 107 (2004) http://dx.doi.org/10.1016/S0308-8146(03)00181-XCrossrefGoogle Scholar

  • [6] M. Kobayashi, T. Natanabe, S. Suzuki, M. Suzuki, Microbiol. Immun. 34, 413 (1990) Google Scholar

  • [7] H. Liu, Y. Du, X. Wang, L. Sun, Int. J. Food Microbio. l 95, 417 (2004) Google Scholar

  • [8] H. Liu, Y. Du, X. Wang, Y. Hu, J.F. Kennedy, Carbohydr. Polym. 56, 243 (2004) http://dx.doi.org/10.1016/j.carbpol.2004.03.001CrossrefGoogle Scholar

  • [9] Y.J. Jeon, S.K. Kim, Carbohydr. Polym. 41, 133 (2000) http://dx.doi.org/10.1016/S0144-8617(99)00084-3CrossrefGoogle Scholar

  • [10] S. Roller, N. Covill, Inter. J. Food Microbiol. 47, 67 (1999) http://dx.doi.org/10.1016/S0168-1605(99)00006-9CrossrefGoogle Scholar

  • [11] W.S. Wan Ngah, K.H. Liang, Ind. Eng. Res. 38, 1411 (1999) http://dx.doi.org/10.1021/ie9803164CrossrefGoogle Scholar

  • [12] L. Zhao, H. Mitomo, F. Yoshii, T. Kume, J. Appl. Polym. Sci. 91(1), 556 (2004) http://dx.doi.org/10.1002/app.13143CrossrefGoogle Scholar

  • [13] Y. Baba, H. Hirakaw, Chem. Lett. 1905 (1992) Google Scholar

  • [14] E. Guibal, N. von Offenberg Sweency, M.C. Zikan, T. Vincent, J.M. Tobin, Int. J. Biol. Macromol. 28, 401 (2001) http://dx.doi.org/10.1016/S0141-8130(01)00130-1CrossrefGoogle Scholar

  • [15] M.L. Arrascue, H.M. Garcia, O. Horna, E. Guibal, Hydrometallurgy 71, 191(2003) http://dx.doi.org/10.1016/S0304-386X(03)00156-7CrossrefGoogle Scholar

  • [16] S. Sun, A. Wang, Reactive & Functional Polymers. 66, 819 (2006) http://dx.doi.org/10.1016/j.reactfunctpolym.2005.11.008CrossrefGoogle Scholar

  • [17] Z. Li, X.P. Zhuang, X.F. Liu, Y. Lin Guan, K. De Yao, Polymer 43, 1541 (2002) http://dx.doi.org/10.1016/S0032-3861(01)00699-1CrossrefGoogle Scholar

  • [18] A.G. Boricha, Z.V.P. Murthy, Chemical Engineering Journal 157, 393 (2010) http://dx.doi.org/10.1016/j.cej.2009.11.025CrossrefGoogle Scholar

  • [19] E.R. Hayes, N, O-carboxymethyl chitosan and preparative method, U.S. Patent 4,619,995 (1986) Google Scholar

  • [20] A.A. Shoukry, M.M. Shoukry, M.N. Hafez, Cent. Eur. J. of Chem. 8(4), 797 (2010) http://dx.doi.org/10.2478/s11532-010-0047-6CrossrefGoogle Scholar

  • [21] M.M. Shoukry, A.A. Shoukry, M.N. Hafez, J. Coord. Chem. 63(4), 652 (2010) http://dx.doi.org/10.1080/00958971003639766CrossrefGoogle Scholar

  • [22] M.M. Shoukry, A.A. Shoukry, P.A. Khalaf Allah, S.S. Hassan, Int. J. Chem. Kin. 608 (2010) Google Scholar

  • [23] Z.D. Bugarcic, D.M. Jancic, A.A. Shoukry, M.M. Shoukry, Monatscefte fur Chemie 135, 151 (2004) (In German) Google Scholar

  • [24] A.A. Shoukry, Transition Metal Chemistry 30(7), 814 (2005) http://dx.doi.org/10.1007/s11243-005-5718-3CrossrefGoogle Scholar

  • [25] A.A. Shoukry, M.M. Mohamed, M.M. Shoukry, J. Solut. Chem. 35, 853 (2006) http://dx.doi.org/10.1007/s10953-006-9032-2CrossrefGoogle Scholar

  • [26] A.A. Shoukry, M.M. Shoukry, J. Annali di Chim. 97, 733 (2007) http://dx.doi.org/10.1002/adic.200790057CrossrefGoogle Scholar

  • [27] A.A. Shoukry, M. Brindell, R. van Eldik, Dalton Trans. 4169 (2007) Google Scholar

  • [28] Vogel’s Text Book of Quantitative Chemical Analysis, 5th Edition (Longman, UK, 1989) ch. 10, 326 Google Scholar

  • [29] J.G. Stark, H.G. Wallace, Chemistry Data Book (Murray, London, 1975) 75 Google Scholar

  • [30] R.J. Angelici, Synthesis and Techniques in Inorganic chemistry, 2nd edition (Saunders, Philadelphia, 1977) 198 Google Scholar

  • [31] P. Gans, A. Sabatini, A. Vacca, J. Inorg.Chimica Acta, 18, 237 (1976) http://dx.doi.org/10.1016/S0020-1693(00)95610-XCrossrefGoogle Scholar

  • [32] M.M. Shoukry, A.A. Shoukry, P.A. Khalf Alla, S.S. Hassan, International Journal of Chemical Kinetics 42(10), 608 (2010) http://dx.doi.org/10.1002/kin.20511CrossrefGoogle Scholar

  • [33] H. Irving, R.J.P. Williams, Nature-land. 162, 746 (1948) http://dx.doi.org/10.1038/162746a0CrossrefGoogle Scholar

  • [34] H. Irving, R.J.P. Williams, J. Chem. Soc. 3192 (1953) Google Scholar

  • [35] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Wiley&Sons, NY, London, 1962) Google Scholar

  • [36] M.T. Beck, Chemistry of complex equilibria (Van Nostrand Reinhold Co., London, New York, 1970) Google Scholar

  • [37] M. Melnik, Coord. Chem. Rev. 36, 1 (1981) http://dx.doi.org/10.1016/S0010-8545(00)80504-4CrossrefGoogle Scholar

  • [38] L. G. Tang, D.N.S. Hon, J. Appl. Pol. Sci. 29, 1476 (2000) Google Scholar

  • [39] K. Nakamoto, Infrared spectra of inorganic and coordination compounds (Wiley, New York, 1970) Google Scholar

  • [40] A.A. Shoukry, M.M. Shoukry, Spectrochimica Acta 70, 686 (2008) http://dx.doi.org/10.1016/j.saa.2007.08.022CrossrefGoogle Scholar

  • [41] K.M. Ibrahim, Synth. React. Inorg. Met-Org. Chem. 23, 1351 (1993) http://dx.doi.org/10.1080/15533179308016691CrossrefGoogle Scholar

  • [42] L.H. Jones, Spectrochimica Acta 10, 395(1958) http://dx.doi.org/10.1016/0371-1951(58)80107-1CrossrefGoogle Scholar

  • [43] S.P. McGlynn, J.K. Smith, J. Chem. Phys. 35, 105 (1961) http://dx.doi.org/10.1063/1.1731876CrossrefGoogle Scholar

  • [44] A.M. Shallaby, M.M. Mostafa, K.M. Ibrahim, M.N.H. Moussa, Spectrochimica Acta 40, 999 (1984) http://dx.doi.org/10.1016/0584-8539(84)80160-9CrossrefGoogle Scholar

  • [45] M.R. Shehata, M.M. Shoukry, F.M. Nasr, R. van Eldik, Dalton Trans. 779 (2008) Google Scholar

  • [46] H. Sigel, R.B. Martin, Chem. Rev. 82, 385 (1982) http://dx.doi.org/10.1021/cr00050a003CrossrefGoogle Scholar

  • [47] H. Siegel, S.S. Massoud, N.A Corfu, J. Am. Chem. Soc. 116, 2958 (1994) http://dx.doi.org/10.1021/ja00086a028CrossrefGoogle Scholar

  • [48] H. Sigel, Angew. Chem. Int-Edn. 14, 394 (1975) http://dx.doi.org/10.1002/anie.197503941CrossrefGoogle Scholar

  • [49] J.E. Huheey, Inorganic chemistry-principles of structure and reactivity (Harper and Row, New York, 1983) Google Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 59–70, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0116-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Jiaoyu Ren, Hongyun Xuan, and Liqin Ge
European Polymer Journal, 2017, Volume 93, Page 521
[3]
Alexander Pestov and Svetlana Bratskaya
Molecules, 2016, Volume 21, Number 3, Page 330
[4]
Azza A. Shoukry and Saedah R. Al-Mhayawi
Journal of Solution Chemistry, 2015, Volume 44, Number 10, Page 2073
[5]
Laxmi Upadhyaya, Jay Singh, Vishnu Agarwal, and Ravi Prakash Tewari
Journal of Controlled Release, 2014, Volume 186, Page 54
[7]
Azza Abdelwahab Shoukry and Saedah Rwede Al-Mhayawi
European Journal of Chemistry, 2013, Volume 4, Number 3, Page 260
[9]
Laxmi Upadhyaya, Jay Singh, Vishnu Agarwal, and Ravi Prakash Tewari
Carbohydrate Polymers, 2013, Volume 91, Number 1, Page 452

Comments (0)

Please log in or register to comment.
Log in