Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 24, 2011

Coordination properties of N,O-carboxymethyl chitosan (NOCC). Synthesis and equilibrium studies of some metal ion complexes. Ternary complexes involving Cu(II) with (NOCC) and some biorelevant ligand

  • Azza Shoukry EMAIL logo and Wafaa Hosny
From the journal Open Chemistry

Abstract

In the present study, the acid-base equilibria of N,O-carboxymethy chitosan abbreviated as (NOCC), is investigated. The complex formation equilibria with the metal ions Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) are investigated potentiometrically. The stability constant values of the binary and ternary complexes formed in solution were determined and the binding centers of the ligands were assigned. The relationships between the properties of the studied central metal ions as ionic radius, electronegativity, atomic number, and ionization potential, and the stability constants of the formed complexes were investigated in an effort to give information about the nature of chemical bonding in complexes and make possible the calculation of unknown stability constants. Cu(II), Ni(II), and U(VI) complexes with NOCC are isolated as solid complexes and characterized by conventional chemical and physical methods. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies. The ternary copper(II) complexes involving NOCC and various biologically relevant ligands containing different functional groups, as amino acids and DNA constituents are investigated. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated.

[1] X. Wang, Y. Du, L. Fan, H. Liu, Y. Hu, Polymer Bulletin. 55, 105 (2005) http://dx.doi.org/10.1007/s00289-005-0414-110.1007/s00289-005-0414-1Search in Google Scholar

[2] C.J. Brine, P.A. Sandford, J.P. Zikakis, Advanced chitin and chitosan (Elsevier, London, 1992) 10.1007/978-94-011-5942-5Search in Google Scholar

[3] R. Huang, Y. Du, J. Yang, Carbohydr. Polym. 51, 431 (2003) http://dx.doi.org/10.1016/S0144-8617(02)00208-410.1016/S0144-8617(02)00208-4Search in Google Scholar

[4] C. Qin, Y. Du, L. Xiao, Z. Li, X. Gao, Int. J. Biol. Macromol. 31, 111(2002) http://dx.doi.org/10.1016/S0141-8130(02)00064-810.1016/S0141-8130(02)00064-8Search in Google Scholar

[5] C. Qin, B. Zhou, L. Zeng, Z. Zhang, Y. Liu, Y. Du, L. Xiao, Food Chem. 84, 107 (2004) http://dx.doi.org/10.1016/S0308-8146(03)00181-X10.1016/S0308-8146(03)00181-XSearch in Google Scholar

[6] M. Kobayashi, T. Natanabe, S. Suzuki, M. Suzuki, Microbiol. Immun. 34, 413 (1990) 10.1111/j.1348-0421.1990.tb01024.xSearch in Google Scholar

[7] H. Liu, Y. Du, X. Wang, L. Sun, Int. J. Food Microbio. l 95, 417 (2004) 10.1016/j.ijfoodmicro.2004.01.022Search in Google Scholar

[8] H. Liu, Y. Du, X. Wang, Y. Hu, J.F. Kennedy, Carbohydr. Polym. 56, 243 (2004) http://dx.doi.org/10.1016/j.carbpol.2004.03.00110.1016/j.carbpol.2004.03.001Search in Google Scholar

[9] Y.J. Jeon, S.K. Kim, Carbohydr. Polym. 41, 133 (2000) http://dx.doi.org/10.1016/S0144-8617(99)00084-310.1016/S0144-8617(99)00084-3Search in Google Scholar

[10] S. Roller, N. Covill, Inter. J. Food Microbiol. 47, 67 (1999) http://dx.doi.org/10.1016/S0168-1605(99)00006-910.1016/S0168-1605(99)00006-9Search in Google Scholar

[11] W.S. Wan Ngah, K.H. Liang, Ind. Eng. Res. 38, 1411 (1999) http://dx.doi.org/10.1021/ie980316410.1021/ie9803164Search in Google Scholar

[12] L. Zhao, H. Mitomo, F. Yoshii, T. Kume, J. Appl. Polym. Sci. 91(1), 556 (2004) http://dx.doi.org/10.1002/app.1314310.1002/app.13143Search in Google Scholar

[13] Y. Baba, H. Hirakaw, Chem. Lett. 1905 (1992) 10.1246/cl.1992.1905Search in Google Scholar

[14] E. Guibal, N. von Offenberg Sweency, M.C. Zikan, T. Vincent, J.M. Tobin, Int. J. Biol. Macromol. 28, 401 (2001) http://dx.doi.org/10.1016/S0141-8130(01)00130-110.1016/S0141-8130(01)00130-1Search in Google Scholar

[15] M.L. Arrascue, H.M. Garcia, O. Horna, E. Guibal, Hydrometallurgy 71, 191(2003) http://dx.doi.org/10.1016/S0304-386X(03)00156-710.1016/S0304-386X(03)00156-7Search in Google Scholar

[16] S. Sun, A. Wang, Reactive & Functional Polymers. 66, 819 (2006) http://dx.doi.org/10.1016/j.reactfunctpolym.2005.11.00810.1016/j.reactfunctpolym.2005.11.008Search in Google Scholar

[17] Z. Li, X.P. Zhuang, X.F. Liu, Y. Lin Guan, K. De Yao, Polymer 43, 1541 (2002) http://dx.doi.org/10.1016/S0032-3861(01)00699-110.1016/S0032-3861(01)00699-1Search in Google Scholar

[18] A.G. Boricha, Z.V.P. Murthy, Chemical Engineering Journal 157, 393 (2010) http://dx.doi.org/10.1016/j.cej.2009.11.02510.1016/j.cej.2009.11.025Search in Google Scholar

[19] E.R. Hayes, N, O-carboxymethyl chitosan and preparative method, U.S. Patent 4,619,995 (1986) Search in Google Scholar

[20] A.A. Shoukry, M.M. Shoukry, M.N. Hafez, Cent. Eur. J. of Chem. 8(4), 797 (2010) http://dx.doi.org/10.2478/s11532-010-0047-610.2478/s11532-010-0047-6Search in Google Scholar

[21] M.M. Shoukry, A.A. Shoukry, M.N. Hafez, J. Coord. Chem. 63(4), 652 (2010) http://dx.doi.org/10.1080/0095897100363976610.1080/00958971003639766Search in Google Scholar

[22] M.M. Shoukry, A.A. Shoukry, P.A. Khalaf Allah, S.S. Hassan, Int. J. Chem. Kin. 608 (2010) 10.1002/kin.20511Search in Google Scholar

[23] Z.D. Bugarcic, D.M. Jancic, A.A. Shoukry, M.M. Shoukry, Monatscefte fur Chemie 135, 151 (2004) (In German) 10.1007/s00706-003-0091-4Search in Google Scholar

[24] A.A. Shoukry, Transition Metal Chemistry 30(7), 814 (2005) http://dx.doi.org/10.1007/s11243-005-5718-310.1007/s11243-005-5718-3Search in Google Scholar

[25] A.A. Shoukry, M.M. Mohamed, M.M. Shoukry, J. Solut. Chem. 35, 853 (2006) http://dx.doi.org/10.1007/s10953-006-9032-210.1007/s10953-006-9032-2Search in Google Scholar

[26] A.A. Shoukry, M.M. Shoukry, J. Annali di Chim. 97, 733 (2007) http://dx.doi.org/10.1002/adic.20079005710.1002/adic.200790057Search in Google Scholar

[27] A.A. Shoukry, M. Brindell, R. van Eldik, Dalton Trans. 4169 (2007) 10.1039/b706856eSearch in Google Scholar

[28] Vogel’s Text Book of Quantitative Chemical Analysis, 5th Edition (Longman, UK, 1989) ch. 10, 326 Search in Google Scholar

[29] J.G. Stark, H.G. Wallace, Chemistry Data Book (Murray, London, 1975) 75 Search in Google Scholar

[30] R.J. Angelici, Synthesis and Techniques in Inorganic chemistry, 2nd edition (Saunders, Philadelphia, 1977) 198 Search in Google Scholar

[31] P. Gans, A. Sabatini, A. Vacca, J. Inorg.Chimica Acta, 18, 237 (1976) http://dx.doi.org/10.1016/S0020-1693(00)95610-X10.1016/S0020-1693(00)95610-XSearch in Google Scholar

[32] M.M. Shoukry, A.A. Shoukry, P.A. Khalf Alla, S.S. Hassan, International Journal of Chemical Kinetics 42(10), 608 (2010) http://dx.doi.org/10.1002/kin.2051110.1002/kin.20511Search in Google Scholar

[33] H. Irving, R.J.P. Williams, Nature-land. 162, 746 (1948) http://dx.doi.org/10.1038/162746a010.1038/162746a0Search in Google Scholar

[34] H. Irving, R.J.P. Williams, J. Chem. Soc. 3192 (1953) 10.1039/jr9530003192Search in Google Scholar

[35] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Wiley&Sons, NY, London, 1962) 10.1002/9780470166055Search in Google Scholar

[36] M.T. Beck, Chemistry of complex equilibria (Van Nostrand Reinhold Co., London, New York, 1970) Search in Google Scholar

[37] M. Melnik, Coord. Chem. Rev. 36, 1 (1981) http://dx.doi.org/10.1016/S0010-8545(00)80504-410.1016/S0010-8545(00)80504-4Search in Google Scholar

[38] L. G. Tang, D.N.S. Hon, J. Appl. Pol. Sci. 29, 1476 (2000) 10.1002/1097-4628(20010222)79:8<1476::AID-APP150>3.0.CO;2-ASearch in Google Scholar

[39] K. Nakamoto, Infrared spectra of inorganic and coordination compounds (Wiley, New York, 1970) Search in Google Scholar

[40] A.A. Shoukry, M.M. Shoukry, Spectrochimica Acta 70, 686 (2008) http://dx.doi.org/10.1016/j.saa.2007.08.02210.1016/j.saa.2007.08.022Search in Google Scholar

[41] K.M. Ibrahim, Synth. React. Inorg. Met-Org. Chem. 23, 1351 (1993) http://dx.doi.org/10.1080/1553317930801669110.1080/15533179308016691Search in Google Scholar

[42] L.H. Jones, Spectrochimica Acta 10, 395(1958) http://dx.doi.org/10.1016/0371-1951(58)80107-110.1016/0371-1951(58)80107-1Search in Google Scholar

[43] S.P. McGlynn, J.K. Smith, J. Chem. Phys. 35, 105 (1961) http://dx.doi.org/10.1063/1.173187610.1063/1.1731876Search in Google Scholar

[44] A.M. Shallaby, M.M. Mostafa, K.M. Ibrahim, M.N.H. Moussa, Spectrochimica Acta 40, 999 (1984) http://dx.doi.org/10.1016/0584-8539(84)80160-910.1016/0584-8539(84)80160-9Search in Google Scholar

[45] M.R. Shehata, M.M. Shoukry, F.M. Nasr, R. van Eldik, Dalton Trans. 779 (2008) 10.1039/B709332BSearch in Google Scholar

[46] H. Sigel, R.B. Martin, Chem. Rev. 82, 385 (1982) http://dx.doi.org/10.1021/cr00050a00310.1021/cr00050a003Search in Google Scholar

[47] H. Siegel, S.S. Massoud, N.A Corfu, J. Am. Chem. Soc. 116, 2958 (1994) http://dx.doi.org/10.1021/ja00086a02810.1021/ja00086a028Search in Google Scholar

[48] H. Sigel, Angew. Chem. Int-Edn. 14, 394 (1975) http://dx.doi.org/10.1002/anie.19750394110.1002/anie.197503941Search in Google Scholar

[49] J.E. Huheey, Inorganic chemistry-principles of structure and reactivity (Harper and Row, New York, 1983) Search in Google Scholar

Published Online: 2011-11-24
Published in Print: 2012-2-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-011-0116-5/html
Scroll to top button