Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Comparison of biosensors based on gold and nanocomposite electrodes for monitoring of malic acid in wine

Rastislav Monošík / Miroslav Streďanský / Gabriel Greif / Ernest Šturdík
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0118-3

Abstract

Amperometric biosensors based on a gold planar electrode and on two types of nanocomposite electrodes consisting of multi-walled carbon nanotubes for the determination of L-malic acid designed for wine-makers were developed. The biosensors designed for wine-makers were constructed by immobilization of L-malate dehydrogenase and diaphorase within chitosan layers on the surface of the electrodes. The coenzyme NAD+ and the electrochemical mediator ferricyanide were present in the measuring solution. The current resulting from re-oxidation of produced ferrocyanide was measured at a working potential of +300 mV against an Ag/AgCl reference electrode. The biosensor based on a gold electrode showed linearity over the range 10–520 µM with a detection limit of 5.41 µM. Calibration curves for biosensors utilizing nanocomposites were obtained both with the linear range of 10 to 610 µM. The detection limits were 1.57 and 1.77 µM, respectively. The biosensors showed satisfactory operational stability (no loss of sensitivity after 30 consecutive measurements) and storage stability (90% of the initial sensitivity after one year of storage at room temperature). The results obtained from measurements of wine samples were in a good correlation with the standard HPLC method. Satisfactory biosensor sensitivity, specificity and stability allowed their successful commercialization.

Keywords: Biosensor; Malic acid; Nanocomposite; Enzyme; Wine analysis

  • [1] H.U. Bergmeyer, Methods of enzymatic analysis, metabolites 2: Tria- and dicarboxylic acids, purines, pyrimidines and derivates, coenzymes, inorganic compounds (Wiley-VCH, Weinheim, Germany, 1985) Google Scholar

  • [2] M. Toit, L. Engelbrecht, E. Lerm, S. Krieger-Weber, Food. Bioprocess. Technol. 1, 1 (2010) Google Scholar

  • [3] S. Maicas, I. Pardo, S. Ferrer, Int. J. Food Sci. Technol. 35, 75 (2000) http://dx.doi.org/10.1046/j.1365-2621.2000.00359.xCrossrefGoogle Scholar

  • [4] J.L.F.C. Lima, T.I.M.S. Lopes, A.O.S.S. Rangel, Anal. Chim. Acta. 366, 187 (1998) http://dx.doi.org/10.1016/S0003-2670(98)00106-8CrossrefGoogle Scholar

  • [5] I. Mato, J.F. Huidobro, M.P. Sanchez, S. Muniategui, M.A. Fernandez-Muino, M.T. Sancho, Food Chem. 62, 503 (1998) http://dx.doi.org/10.1016/S0308-8146(97)00166-0CrossrefGoogle Scholar

  • [6] M. Palma, C.G. Barroso, Anal. Chim. Acta. 458, 119 (2002) http://dx.doi.org/10.1016/S0003-2670(01)01527-6CrossrefGoogle Scholar

  • [7] T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas, J. Martin, J. Chromatogr. A. 1026, 57 (2004) http://dx.doi.org/10.1016/j.chroma.2003.10.130CrossrefGoogle Scholar

  • [8] J. Katrlik, A. Pizzariello, V. Mastihuba, J. Svorc, M. Stredansky, S. Miertus, Anal. Chim. Acta. 379, 193 (1999) http://dx.doi.org/10.1016/S0003-2670(98)00610-2CrossrefGoogle Scholar

  • [9] M. Arif, S.J. Setford, K.S. Burton, I.E. Tothill, Analyst 127, 104 (2002) http://dx.doi.org/10.1039/b106400mCrossrefGoogle Scholar

  • [10] F. Mazzei, F. Botre, G. Favero, Microchem. J. 87, 81 (2007) http://dx.doi.org/10.1016/j.microc.2007.05.009CrossrefGoogle Scholar

  • [11] M. Esti, G. Volpe, L. Micheli, E. Delibato, D. Compagnone, D. Moscone, G. Palleschi, Anal. Chim. Acta. 513, 357 (2004) http://dx.doi.org/10.1016/j.aca.2003.12.011CrossrefGoogle Scholar

  • [12] N. Gajovic, A. Warsinke, F.W. Scheller J. Biotechnol. 61, 129 (1998) http://dx.doi.org/10.1016/S0168-1656(98)00029-7CrossrefGoogle Scholar

  • [13] N. Gajovic, A. Warsinke, F.W. Scheller, J. Chem. Technol. Biotechnol. 68, 31 (1999) http://dx.doi.org/10.1002/(SICI)1097-4660(199701)68:1<31::AID-JCTB599>3.0.CO;2-ACrossrefGoogle Scholar

  • [14] S. Miertus, J. Katrlik, A. Pizzariello, M. Stredansky, J. Svitel, J. Svorc, Biosens. Bioelectron. 13, 911 (1998) http://dx.doi.org/10.1016/S0956-5663(98)00063-3CrossrefGoogle Scholar

  • [15] B. Bucur, E. Mallat, A.-M. Gurban, Y. Gocheva, C. Velasco, J.-L. Marty, T. Noguer, Biosens. Bioelectron. 21, 2290 (2006) http://dx.doi.org/10.1016/j.bios.2005.10.022CrossrefGoogle Scholar

  • [16] M. Gilis, M. Comtat, Sensor Actuat. B-Chem. 26–27, 417 (1995) http://dx.doi.org/10.1016/0925-4005(94)01630-ZCrossrefGoogle Scholar

  • [17] R. Monosik, M. Stredansky, J. Tkac, E. Sturdik, Food Anal. Method. DOI: 10.1007/s12161-011-9222-4 CrossrefGoogle Scholar

  • [18] S. Iijima, Nature 354, 56 (1991) http://dx.doi.org/10.1038/354056a0CrossrefGoogle Scholar

  • [19] J. Wang, Electroanalysis 17, 7 (2005) http://dx.doi.org/10.1002/elan.200403113CrossrefGoogle Scholar

  • [20] G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu, Biosens. Bioelectron. 20, 2140 (2005) http://dx.doi.org/10.1016/j.bios.2004.09.005CrossrefGoogle Scholar

  • [21] M. Musameh, J. Wang, A. Merkoci, Y. Lin, Electrochem. Commun. 4, 743 (2002) http://dx.doi.org/10.1016/S1388-2481(02)00451-4CrossrefGoogle Scholar

  • [22] M. Gamella, S. Campuzano, F. Conzuelo, J.A. Curiel, R. Munoz, A.J. Reviejo, J. M. Pingarron, Talanta 81, 925 (2010) http://dx.doi.org/10.1016/j.talanta.2010.01.038CrossrefGoogle Scholar

  • [23] A. Arvinte, L. Rotariu, C. Bala, A.M. Gurban, Bioelectrochemistry 76, 107 (2009) http://dx.doi.org/10.1016/j.bioelechem.2009.04.005CrossrefGoogle Scholar

  • [24] A. Arvinte, L. Rotariu, C. Bala, Sensors 8, 1497 (2008) http://dx.doi.org/10.3390/s8031497CrossrefGoogle Scholar

  • [25] J. Tkac, T. Ruzgas, Electrochem. Commun. 8, 899 (2006) http://dx.doi.org/10.1016/j.elecom.2006.03.028CrossrefGoogle Scholar

  • [26] U.B. Trivedi, D. Lakshminarayana, I.L. Kothari, P.B. Patel, C.J. Panchal, Sens. Actuators, B 136, 45 (2009) http://dx.doi.org/10.1016/j.snb.2008.10.020CrossrefGoogle Scholar

  • [27] A.M. Gurman, B. Prieto-Simon, J.L. Marty, T. Noguer, Anal. Lett. 39, 1543 (2006) http://dx.doi.org/10.1080/00032710600713214CrossrefGoogle Scholar

  • [28] A.F. Groboillot, C.P. Champagne, G.D. Darling, D. Poncelet, R.J. Neufild, Biotechnol. Bioeng. 42, 1157 (1993) http://dx.doi.org/10.1002/bit.260421005CrossrefGoogle Scholar

  • [29] B. Krajewska, Microb. Technol. 35, 126 (2004) http://dx.doi.org/10.1016/j.enzmictec.2003.12.013CrossrefGoogle Scholar

  • [30] M. Nishiyama, N. Matsubara, K. Yamamoto, S. Iijima, T. Uozumi, T. Beppu, J. Biol. Chem. 261, 14178 (1986) Google Scholar

  • [31] H. Huang, N.F. Hu, Y.H. Zeng, G. Zhou, Anal. Biochem. 308, 141 (2002) http://dx.doi.org/10.1016/S0003-2697(02)00242-7CrossrefGoogle Scholar

  • [32] Y. Tan, W. Deng, B. Ge, Q. Xie, J. Huang, S. Yao, Biosens. Bioelectron. 24, 2225 (2009) http://dx.doi.org/10.1016/j.bios.2008.11.026CrossrefGoogle Scholar

  • [33] M.G. Zhang, A. Smith, W. Gorski, Anal. Chem. 76, 5045 (2004) http://dx.doi.org/10.1021/ac049519uCrossrefGoogle Scholar

  • [34] Q. Zhou, Q. Xie, Y. Fu, Z. Su, X. Jia, S. Yao, J. Phys. Chem. B 111, 11276 (2007) http://dx.doi.org/10.1021/jp073884iCrossrefGoogle Scholar

  • [35] Y. Liu, X.H. Qu, H.W. Guo, H.J. Chen, B.F. Liu, S.J. Dong, Biosens. Bioelectron. 21, 2195 (2006) http://dx.doi.org/10.1016/j.bios.2005.11.014CrossrefGoogle Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 157–164, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0118-3.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pablo Giménez-Gómez, Manuel Gutiérrez-Capitán, Fina Capdevila, Anna Puig-Pujol, Cesar Fernández-Sánchez, and Cecilia Jiménez-Jorquera
Analytica Chimica Acta, 2017, Volume 954, Page 105
[2]
E. Vargas, M.A. Ruiz, F.J. Ferrero, S. Campuzano, V. Ruiz-Valdepeñas Montiel, A.J. Reviejo, and J.M. Pingarrón
Talanta, 2016, Volume 158, Page 6
[3]
Begoña Molinero-Abad, M. Asunción Alonso-Lomillo, Olga Domínguez-Renedo, and M. Julia Arcos-Martínez
Sensors and Actuators B: Chemical, 2015, Volume 211, Page 250
[4]
Rastislav Monošík and Lúcio Angnes
Microchemical Journal, 2015, Volume 119, Page 159
[5]
Begoña Molinero-Abad, M. Asunción Alonso-Lomillo, Olga Domínguez-Renedo, and M. Julia Arcos-Martínez
Sensors and Actuators B: Chemical, 2014, Volume 202, Page 971
[6]
Miroslav Streďanský, Rastislav Monošík, Vladimír Mastihuba, and Ernest Šturdík
Applied Biochemistry and Biotechnology, 2013, Volume 171, Number 4, Page 1032
[7]
[8]
Siamak Gheibi, Hassan Karimi-Maleh, Mohammad A. Khalilzadeh, and Hasan Bagheri
Journal of Food Science and Technology, 2015, Volume 52, Number 1, Page 276
[9]
Rastislav Monošík, Peter Magdolen, Miroslav Streďanský, and Ernest Šturdík
Food Chemistry, 2013, Volume 138, Number 1, Page 220
[10]
Rastislav Monošík, Miroslav Streďanský, and Ernest Šturdík
Food Analytical Methods, 2013, Volume 6, Number 2, Page 521
[11]
Rastislav Monošík, Miroslav Streďanský, and Ernest Šturdík
Acta Chimica Slovaca, 2012, Volume 5, Number 1

Comments (0)

Please log in or register to comment.
Log in