Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Coagulation and UF treatment of pulp and paper mill wastewater in comparison

Marjana Simonič / Doroteja Vnučec
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0121-8

Abstract

A study using coagulation-flocculation and ultrafiltration (UF)methods for pulp and paper mills’ wastewater (WW)was carried out. The reduction efficiencies of turbidity and chemical oxygen demand (COD), the removal efficiency of total suspended solids (TSS) and absorbance at 254 nm were the main evaluating parameters. Using coagulation-flocculation, the efficiencies of alum and polyaluminum chloride (PACl)were studied, when used alone and when coupled with flocculant aids. During the coagulation-flocculation process, use of a single coagulant, the coagulant dosage, and the pH, play an important role in determining the coagulation efficiency. At the optimum PACl dosage of 840 mg L−1 and optimum pH of 9.0, turbidity reduction was found to be 94.5%. A combination of inorganic coagulant and flocculant, or polymer was applied, in which PACl was used coupled with the polyelectrolytes Organopol WPB20 and WPB40. PACl coupled with Organopol WPB20 by optimal pH 9 gave a 98.3% reduction of turbidity, 91.9% removal of TSS, and a 60.2% reduction in COD. Ultrafiltration trials were carried out on a pilot scale. A tubular module was used with ceramic membrane. This membrane is a multi-channel membrane with an active surface layer made of Al2O3 and ZrO2. Within the acidic range, the turbidity and TSS were removed at above 99%.

Keywords: Flocculation; Ceramic membrane; Colloidal particles; Turbidity; COD; TSS

  • [1] G. Thompson, J. Swain, M. Kay, C.F. Forster, Bioresource Technol. 77, 275 (2001) http://dx.doi.org/10.1016/S0960-8524(00)00060-2CrossrefGoogle Scholar

  • [2] J.D. Achoka, Water Res. 36, 1203 (2002) http://dx.doi.org/10.1016/S0043-1354(01)00325-6CrossrefGoogle Scholar

  • [3] N. Buyukkamaci, E. Koken, Sci. Total Environ. 408, 6070 (2010) http://dx.doi.org/10.1016/j.scitotenv.2010.08.045CrossrefGoogle Scholar

  • [4] A.L. Ahmad, S.S. Wong, T.T. Teng, A. Zuhairi, Chem. Eng. J. 137, 510 (2008) http://dx.doi.org/10.1016/j.cej.2007.03.088CrossrefGoogle Scholar

  • [5] A.M. Amat, A. Arques, F. López, M.A. Miranda, Sol. Energy 79, 393 (2005) http://dx.doi.org/10.1016/j.solener.2005.02.021CrossrefGoogle Scholar

  • [6] R. Katal, H. Pahlavanzadeh, Desalination 265, 199 (2011) http://dx.doi.org/10.1016/j.desal.2010.07.052CrossrefGoogle Scholar

  • [7] V. Fontanier, V. Farines, J. Albet, S. Baig, J. Molinier, Water Res. 40, 303 (2006) http://dx.doi.org/10.1016/j.watres.2005.11.007CrossrefGoogle Scholar

  • [8] M. Xu, Q. Wang, Y. Hao, J. Hazard. Mater. 148, 103 (2007) http://dx.doi.org/10.1016/j.jhazmat.2007.02.015CrossrefGoogle Scholar

  • [9] A. Gutiérrez, J.C. de1 Río, M.J. Martínez, A.T. Martínez, Trends Biotechnol. 19, 340 (2001) http://dx.doi.org/10.1016/S0167-7799(01)01705-XCrossrefGoogle Scholar

  • [10] J.C. de1 Río, A. Gutiérrez, F.J. González-Vila, F. Martín, J. Romero, J. Chromatogr. A 823, 457 (1998) Google Scholar

  • [11] J.C. de1 Río, J. Romero, A. Gutiérrez, J. Chromatogr. A 874, 235 (2000) http://dx.doi.org/10.1016/S0021-9673(00)00111-4CrossrefGoogle Scholar

  • [12] M.I. Aguilar et al., Chemosphere 58, 47 (2005) http://dx.doi.org/10.1016/j.chemosphere.2004.09.008CrossrefGoogle Scholar

  • [13] R.J. Stephenson, S.J.B. Duff, Water Res. 30, 781 (1996) http://dx.doi.org/10.1016/0043-1354(95)00213-8CrossrefGoogle Scholar

  • [14] R. Sarika, N. Kalogerakis, D. Mantzavinos, Environ. Int. 31, 297 (2005) http://dx.doi.org/10.1016/j.envint.2004.10.006CrossrefGoogle Scholar

  • [15] J.M. Ebeling, K.L. Rishel, P.L. Sibrell, Aquacult. Eng. 33, 235 (2005) http://dx.doi.org/10.1016/j.aquaeng.2005.02.001CrossrefGoogle Scholar

  • [16] K.B. Girma, V. Lorenz, S. Blaurock, F.T. Edelmann, Coordin. Chem. Rev. 249, 1283 (2005) http://dx.doi.org/10.1016/j.ccr.2005.01.028CrossrefGoogle Scholar

  • [17] S.S. Wong, T.T. Teng, A.L. Ahmad, A. Zuhairi, G. Najafpour, J. Hazard. Mater. 135, 378 (2006) http://dx.doi.org/10.1016/j.jhazmat.2005.11.076CrossrefGoogle Scholar

  • [18] D. Pokhrel, T. Viraraghavan, Sci. Total Environ. 333, 37 (2004) http://dx.doi.org/10.1016/j.scitotenv.2004.05.017CrossrefGoogle Scholar

  • [19] A. Maartens, E.P. Jacobs, P. Swart, J. Membrane Sci. 209, 81 (2002) http://dx.doi.org/10.1016/S0376-7388(02)00266-1CrossrefGoogle Scholar

  • [20] M. Pizzichini, C. Russo, C. Di Meo, Desalination 178, 351 (2005) http://dx.doi.org/10.1016/j.desal.2004.11.045CrossrefGoogle Scholar

  • [21] C.H. Ko, C. Fan, J. Hazard. Mater. 181, 763 (2010) http://dx.doi.org/10.1016/j.jhazmat.2010.05.079CrossrefGoogle Scholar

  • [22] Y. Zhang, C. Ma, F. Ye, Y. Kong, H. Li, Desalination 236, 349 (2009) http://dx.doi.org/10.1016/j.desal.2007.10.086CrossrefGoogle Scholar

  • [23] S. Bhattacharjee, S. Datta, C. Bhattacharjee, Desalination 212, 92 (2007) http://dx.doi.org/10.1016/j.desal.2006.08.014CrossrefGoogle Scholar

  • [24] T. Leiviskä et al., Water Res. 42, 3952 (2008) http://dx.doi.org/10.1016/j.watres.2008.06.016CrossrefGoogle Scholar

  • [25] J.M. Ebeling, P.L. Sibrell, S.R. Ogden, S.T. Summerfelt, Aquacult. Eng. 29, 23 (2003) http://dx.doi.org/10.1016/S0144-8609(03)00029-3CrossrefGoogle Scholar

  • [26] J. Hermia, Trans. Inst. Chem. Eng. 60, 183 (1982) Google Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 127–136, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0121-8.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Abdelkader Ltifi, Neila Saidi, Mokded Rabhi, Kathleen S. Sealey, Amor Hafiane, Abderrazak Smaoui, and Chedly Abdelly
CLEAN - Soil, Air, Water, 2017, Page 1500471
[4]
Chee Yang Teh, Pretty Mori Budiman, Katrina Pui Yee Shak, and Ta Yeong Wu
Industrial & Engineering Chemistry Research, 2016, Volume 55, Number 16, Page 4363
[5]
S. Mahesh, Krishan Kishor Garg, Vimal Chandra Srivastava, Indra Mani Mishra, Basheshwar Prasad, and Indra Deo Mall
RSC Adv., 2016, Volume 6, Number 20, Page 16223
[6]
Matthew O'Connor, Gil Garnier, and Warren Batchelor
Journal of Cleaner Production, 2014, Volume 79, Page 168
[7]
Matthew O'Connor, Gil Garnier, and Warren Batchelor
Journal of Industrial Ecology, 2014, Volume 18, Number 5, Page 771
[8]
Na Yin, Zhaoxiang Zhong, and Weihong Xing
Desalination, 2013, Volume 319, Page 92
[9]
Yitong Zhou, Heng Zhao, Haolong Bai, Liping Zhang, and Huanwei Tang
Procedia Environmental Sciences, 2012, Volume 16, Page 145
[10]

Comments (0)

Please log in or register to comment.
Log in