Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Mukaiyama-Michael vinylogous additions to nitroalkenes under solvent-free conditions

Arrigo Scettri / Rosaria Villano / Patrizia Manzo / Maria Acocella
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0122-7

Abstract

The first Mukaiyama-Michael vinylogous reaction of a dioxinone-derived silyl ether to nitroalkenes is reported. The conjugate addition is performed in absence of any catalyst under solvent-free conditions, proceeding with satisfactory efficiency with variously substituted nitroalkenes.

Moreover, the first organocatalyzed Mukaiyama-Michael vinylogous reaction of trimethylsilyloxyfuran to nitroalkenes is described.The reaction is promoted by Brønsted acids under solvent-free conditions, taking place in moderate to good yield with variously substituted nitroalkenes..

Keywords: Organocatalysis; Trimethylsilyloxyfuran; Dioxinone-derived silyl ether; Brønsted acids; Nitroalkenes

  • [1] J. Christoffers, Eur. J. Org. Chem. 1259 (1998) Google Scholar

  • [2] N. Krause, A. Hoffmann-Röder, Synthesis 171 (2001) Google Scholar

  • [3] J. Christoffers, Synlett 723 (2001) Google Scholar

  • [4] H. Yang, S. Kim, Synlett 555 (2008) Google Scholar

  • [5] M. Sibi, S. Mangem, Tetrahedron 56, 8033 (2000) http://dx.doi.org/10.1016/S0040-4020(00)00618-9CrossrefGoogle Scholar

  • [6] O.M. Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem. 1877 (2002) Google Scholar

  • [7] N. Ono, In: H. Feuer (Ed), The Nitro Group in Organic Synthesis (Wiley-VCH, New York, 2001) http://dx.doi.org/10.1002/0471224480CrossrefGoogle Scholar

  • [8] A.S. Demir, S. Eymur, Tetrahedron: Asymmetry 21, 112 (2010) http://dx.doi.org/10.1016/j.tetasy.2009.12.008CrossrefGoogle Scholar

  • [9] Y. Zhu, J.P. Malerich, V.H. Rawal, Angew. Chem. Int. Ed. 49, 153 (2010) Google Scholar

  • [10] F.A. Luzzio, Tetrahedron 57, 915 (2001) http://dx.doi.org/10.1016/S0040-4020(00)00965-0CrossrefGoogle Scholar

  • [11] G. Rosini, In: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis (Pergamon press, New York, 1991) Vol. 2, p. 321 http://dx.doi.org/10.1016/B978-0-08-052349-1.00032-9CrossrefGoogle Scholar

  • [12] H.W. Pimuk, Org. React. 38, 685 (1990) Google Scholar

  • [13] J.U. Nef, Justus Liebigs Ann. Chem. 210, 263 (1894) http://dx.doi.org/10.1002/jlac.18942800209CrossrefGoogle Scholar

  • [14] R. Tamura, A. Kamimura, N. Ono, Synthesis 423 (1991) Google Scholar

  • [15] M.A. Poupart, G. Fazal, S. Goulet, L.T. Mar J. Org. Chem. 64, 1356 (1999) http://dx.doi.org/10.1021/jo9815204CrossrefGoogle Scholar

  • [16] A.G.M. Barrett, C.D. Spilling, Tetrahedron Lett. 29, 5733 (1988) http://dx.doi.org/10.1016/S0040-4039(00)82175-9CrossrefGoogle Scholar

  • [17] D.H. Layd, D.E. Nichols, J. Org. Chem. 51,4294 (1986) http://dx.doi.org/10.1021/jo00372a037CrossrefGoogle Scholar

  • [18] B. Raju, R. Ragul, B.N. Sivasankar, Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 48B, 1315 (2009) Google Scholar

  • [19] V. Meyer, C. Wurster, Ber. Dtsch. Chem. Ges. 6, 1168 (1873) http://dx.doi.org/10.1002/cber.18730060294CrossrefGoogle Scholar

  • [20] M.J. Kamlet, L.A. Kaplan, J.C. Dacons, J. Org. Chem. 26, 4371 (1961) http://dx.doi.org/10.1021/jo01069a046CrossrefGoogle Scholar

  • [21] T. Mukaiyama, T. Hoshino, J. Am. Chem. Soc. 82, 5339 (1960) http://dx.doi.org/10.1021/ja01505a017CrossrefGoogle Scholar

  • [22] R. Braslau, G. O’Brian, J. Henise, Y. Thongpaisanwong, E. Murphy, L. Mueller, J. Ruehl, Synthesis, 1496 (2005) Google Scholar

  • [23] C. Palomo, S. Vera, A. Mielgo, E. Gómez-Bengoa, Angew. Chem. Int. Ed. 45, 5984 (2006) http://dx.doi.org/10.1002/anie.200602207CrossrefGoogle Scholar

  • [24] For recent reviews, see Google Scholar

  • [25] E.R. Jarno, S.D. Miller, Tetrahedron 58, 2481 (2002) http://dx.doi.org/10.1016/S0040-4020(02)00122-9CrossrefGoogle Scholar

  • [26] B. List, Tetrahedron 58, 5573 (2002) http://dx.doi.org/10.1016/S0040-4020(02)00516-1CrossrefGoogle Scholar

  • [27] B. List, Acc. Chem. Res. 37, 548 (2004) http://dx.doi.org/10.1021/ar0300571CrossrefGoogle Scholar

  • [28] B. List, Chem. Commun. 819 (2006) Google Scholar

  • [29] D.M. Barners, J. Ji, M.G. Fickers, M. A. Fitzperald, S.A. King, H.E. Morton, F.A. Plagge, M. Preskill, S.H. Wagaw, S.J. Wittenberg, J. Zhang, J. Am. Chem. Soc. 124, 13097 (2002) http://dx.doi.org/10.1021/ja026788yCrossrefGoogle Scholar

  • [30] M. Watanobe, A. Ikagawa, H. Wang, K. Murata, T. Ikariya, J. Am. Chem. Soc. 126, 11148 (2004) http://dx.doi.org/10.1021/ja046296gCrossrefGoogle Scholar

  • [31] D.A. Evans, D. Seidel, J. Am. Chem. Soc. 127, 9958 (2005) http://dx.doi.org/10.1021/ja052935rCrossrefGoogle Scholar

  • [32] S. Kobayashi, S. Suda, M. Yamada, T. Mukaiyama, Chem. Lett. 23, 97 (1994) http://dx.doi.org/10.1246/cl.1994.97CrossrefGoogle Scholar

  • [33] A. Bernardi, K. Karamfilova, G. Boschin, C. Scolastico, Tetrahedron Lett. 36, 1363 (1995) http://dx.doi.org/10.1016/0040-4039(94)02478-TCrossrefGoogle Scholar

  • [34] A. Bernardi, G. Colombo, C. Scolastico, Tetrahedron Lett. 37, 8921 (1996) http://dx.doi.org/10.1016/S0040-4039(96)02048-5CrossrefGoogle Scholar

  • [35] D.A. Evans, T. Rouis, M.C. Mekazlowski, J.S. Terdrow, J. Am. Chem. Soc. 121, 1994 (1999) http://dx.doi.org/10.1021/ja983864hCrossrefGoogle Scholar

  • [36] W. Wang, H. Li, J. Wang, Org. Lett. 7, 1637 (2005) http://dx.doi.org/10.1021/ol0503337CrossrefGoogle Scholar

  • [37] S. E. Denmark, M. Xie, J. Org. Chem. 72, 7050 (2007) http://dx.doi.org/10.1021/jo071126iCrossrefGoogle Scholar

  • [38] M. De Rosa, M.R. Acocella, R. Villano, A. Soriente, A. Scettri, Tetrahedron: Asymmetry 14, 2499 (2003) http://dx.doi.org/10.1016/S0957-4166(03)00494-4CrossrefGoogle Scholar

  • [39] M.R. Acocella, A. Massa, L. Palombi, R. Villano, A. Scettri, Tetrahedron Lett. 46, 6141 (2005) http://dx.doi.org/10.1016/j.tetlet.2005.06.152CrossrefGoogle Scholar

  • [40] M.R. Acocella, M. De Rosa, A. Massa, L. Palombi, R. Villano, A. Scettri, Tetrahedron 61, 4091 (2005) http://dx.doi.org/10.1016/j.tet.2005.02.020CrossrefGoogle Scholar

  • [41] R. Villano, M.R. Acocella, A. Massa, L. Palombi, A. Scettri, Tetrahedron 63, 12317 (2007) http://dx.doi.org/10.1016/j.tet.2007.09.073CrossrefGoogle Scholar

  • [42] M. Frings, I. Atodiresci, Y. Wang, J. Runsik, G. Raabe, C. Bolm, Chem. Eur. J. 165, 4577 (2010) http://dx.doi.org/10.1002/chem.200903077CrossrefGoogle Scholar

  • [43] I. Fleming, T. V. Lee, Tetrahedron Lett. 22, 705 (1981) http://dx.doi.org/10.1016/S0040-4039(01)92530-4CrossrefGoogle Scholar

  • [44] J. Hassfeld, M. Chistmann, M. Kalesse, Org. Lett. 3, 3561 (2001) http://dx.doi.org/10.1021/ol016677oCrossrefGoogle Scholar

  • [45] D.M. Speare, S.M. Fleming, M.N. Beckett, J.-J. Li, T.D.H. Bugg, Org. Biomol. Chem. 2, 2942 (2004) http://dx.doi.org/10.1039/b410322jCrossrefGoogle Scholar

  • [46] S.E. Denmark, J.R. Heemstra, Jr. J. Org. Chem. 72, 5668 (2007) http://dx.doi.org/10.1021/jo070638uCrossrefGoogle Scholar

  • [47] S.E. Denmark, M. Xie, J. Org. Chem. 72, 7050 (2007) http://dx.doi.org/10.1021/jo071126iCrossrefGoogle Scholar

  • [48] K. Krohn, J. Diederichs, M. Riaz Tetrahedron 62, 1223 (2006) http://dx.doi.org/10.1016/j.tet.2005.10.063CrossrefGoogle Scholar

  • [49] H. Uno, A. Masumoto, E. Honda, Y. Nagamachi, Y. Yamaoka, N. Ono, J. Chem. Soc. Perkin Trans 1, 3189 (2001) http://dx.doi.org/10.1039/b104789mCrossrefGoogle Scholar

  • [50] S. E. Denmark, M. Xie, J. Org. Chem. 72, 7050 (2007) http://dx.doi.org/10.1021/jo071126iCrossrefGoogle Scholar

  • [51] Y.S. Rao, Chem. Rev. 76, 625 (1976) http://dx.doi.org/10.1021/cr60303a004CrossrefGoogle Scholar

  • [52] M.V.N. De Souza, Mini-Rev. Org. Chem. 2, 139 (2005) http://dx.doi.org/10.2174/1570193053544427CrossrefGoogle Scholar

  • [53] N.B. Carter, A.E. Nadany, J.R. Sweeney, J. Chem. Soc. Perkin Trans 1, 2324 (2002) http://dx.doi.org/10.1039/b007664nCrossrefGoogle Scholar

  • [54] C.W. Jefford, A.W. Sledeski, J. Boukouvalas, Helv. Chim. Acta 72, 1362 (1989) http://dx.doi.org/10.1002/hlca.19890720625CrossrefGoogle Scholar

  • [55] B. Figadère, C. Chaboche, J. F. Peyrat, A. Cove, Tetrahedon Lett. 34, 8093 (1993) http://dx.doi.org/10.1016/S0040-4039(00)61460-0CrossrefGoogle Scholar

  • [56] B. Figadère, J.F. Peyrat, A. Cove, J. Org. Chem. 62, 3428 (1997) http://dx.doi.org/10.1021/jo970212nCrossrefGoogle Scholar

  • [57] S. Hanessian, T.A. Grillo, J. Org. Chem. 63, 1049 (1998) http://dx.doi.org/10.1021/jo9713621CrossrefGoogle Scholar

  • [58] S. Hanessian, S. Giroux, M. Buffat, Org. Lett. 7, 3989 (2005) http://dx.doi.org/10.1021/ol051483kCrossrefGoogle Scholar

  • [59] I. Hanna, L. Ricard, Tetrahedron Lett. 40, 863 (1999) http://dx.doi.org/10.1016/S0040-4039(98)02541-6CrossrefGoogle Scholar

  • [60] C.-W. Cho, M.J. Krische, Angew. Chem. Int. Ed. 6689 (2004) Google Scholar

  • [61] N. Maulide, I.E. Marko, Org. Lett. 8, 3705 (2006) http://dx.doi.org/10.1021/ol061284gCrossrefGoogle Scholar

  • [62] S.-K. Kang, T. Yamaguchi, P.-S. Ho, W.-Y. Kim, S.-K. Yoon, Tetrahedron Lett. 38, 1947 (1997) http://dx.doi.org/10.1016/S0040-4039(97)00230-XGoogle Scholar

  • [63] S.-K. Kang, H.-C. Ryu, Y.-T. Hong, J. Chem. Soc. Perkin Trans 1,20, 3350 (2000). http://dx.doi.org/10.1039/b006431iCrossrefGoogle Scholar

  • [64] G. Casiraghi, F. Zanardi, G. Appendino, G. Rassu, Chem. Rev. 100, 1929 (2000) http://dx.doi.org/10.1021/cr990247iCrossrefGoogle Scholar

  • [65] M. Szlosek, B. Figadère, Angew. Chem. Int. Ed. 39, 1799 (2000) http://dx.doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1799::AID-ANIE1799>3.0.CO;2-ZCrossrefGoogle Scholar

  • [66] S. Onitsuka, Y. Matsuoka, R. Irie, T. Katsuki, Chem. Lett. 32, 974 (2003) http://dx.doi.org/10.1246/cl.2003.974CrossrefGoogle Scholar

  • [67] L. Palombi, M.R. Acocella, N. Celenta, A. Massa, R. Villano, A. Scettri, Tetrahedron: Asymmetry 17, 3300 (2006) http://dx.doi.org/10.1016/j.tetasy.2006.11.041CrossrefGoogle Scholar

  • [68] E.L. Carswell, M.L. Snapper, A.H. Hoveyda, Angew. Chem. Int. Ed. 45, 7230 (2006) http://dx.doi.org/10.1002/anie.200603496CrossrefGoogle Scholar

  • [69] M. De Rosa, L. Citro, A. Soriente, Tetrahedron Lett. 47, 8507 (2006) http://dx.doi.org/10.1016/j.tetlet.2006.09.143CrossrefGoogle Scholar

  • [70] T. Ollevier, J.E. Bouchard, V. Desyroy J. Org. Chem. 73, 331 (2008) http://dx.doi.org/10.1021/jo702085pCrossrefGoogle Scholar

  • [71] M.A. Brimble, R.J.R. Elliot, Tetrahedron 53, 7715 (1997) http://dx.doi.org/10.1016/S0040-4020(97)00436-5CrossrefGoogle Scholar

  • [72] M.C. Carreno, C.G. Luzon, M. Ribagorda, Chem. Eur. J. 8, 208 (2002) http://dx.doi.org/10.1002/1521-3765(20020104)8:1<208::AID-CHEM208>3.0.CO;2-0CrossrefGoogle Scholar

  • [73] H. Suga, T. Kitamura, A. Kakehi, T. Baba, Chem. Commun. 1414 (2004) Google Scholar

  • [74] H. Kitajima, T. Katsuki, Synlett 568 (1997) Google Scholar

  • [75] H. Kitajima, T. Katsuki, Tetrahedron 53, 17015 (1997) http://dx.doi.org/10.1016/S0040-4020(97)10152-1CrossrefGoogle Scholar

  • [76] G. Desimoni, G. Faita S. Filippone, M. Mella, M.G. Zampari, M. Zema, Tetrahedron 57, 10203 (2001) http://dx.doi.org/10.1016/S0040-4020(01)01055-9CrossrefGoogle Scholar

  • [77] G. Desimoni, G. Faita, M. Guala, A. Laurenti, M. Mella Chem. Eur. J. 11, 3816 (2005) http://dx.doi.org/10.1002/chem.200401213CrossrefGoogle Scholar

  • [78] T. Fukuyama, S. Goto, Tetrahedron Lett. 30, 6491 (1989) http://dx.doi.org/10.1016/S0040-4039(01)89002-XCrossrefGoogle Scholar

  • [79] S.P. Brown, N.C. Goodwin, D.W.C. Mac Millan, J. Am. Chem. Soc. 125, 1192 (2003) http://dx.doi.org/10.1021/ja029095qCrossrefGoogle Scholar

  • [80] B. Simmons, A.M. Walji, C.H. Larsen, D.W.C. MacMillan, Angew. Chem. Int. Ed. 48, 4349 (2009) http://dx.doi.org/10.1002/anie.200900220CrossrefGoogle Scholar

  • [81] B.M. Trost, J. Hitce, J. Am. Chem. Soc. 131, 4572 (2009) http://dx.doi.org/10.1021/ja809723uCrossrefGoogle Scholar

  • [82] M. Terada, K. Ando, Org. Lett. 13, 2026 (2011) http://dx.doi.org/10.1021/ol200415uCrossrefGoogle Scholar

  • [83] N.J.A. Martin, X. Cheng, B. List, J. Am. Chem. Soc. 130, 13862 (2008) http://dx.doi.org/10.1021/ja8069852CrossrefGoogle Scholar

  • [84] N.J.A. Martin, L. Ozores, B. List, J. Am. Chem. Soc. 129, 8976 (2007) http://dx.doi.org/10.1021/ja074045cCrossrefGoogle Scholar

  • [85] J. Itoh, K. Fuchibe, T. Akiyama, Angew. Chem. Int. Ed. 47, 4016 (2008) http://dx.doi.org/10.1002/anie.200800770CrossrefGoogle Scholar

  • [86] P.R. Schreiner, Z. Zhang, Synthesis 2559 (2007) Google Scholar

  • [87] S.J. Connon, Angew. Chem. Int. Ed. 45, 3909 (2006) http://dx.doi.org/10.1002/anie.200600529CrossrefGoogle Scholar

  • [88] T. Akiyama, Chem. Rev. 107, 5744 (2007) http://dx.doi.org/10.1021/cr068374jCrossrefGoogle Scholar

  • [89] M. Terada Chem. Commun. 4097 (2008) Google Scholar

  • [90] A. Scettri, V. De Sio, R. Villano, M.R. Acocella, Synlett 2629 (2009) Google Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 47–53, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0122-7.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
María Frias, Rubén Mas-Ballesté, Saira Arias, Cuauhtemoc Alvarado, and José Alemán
Journal of the American Chemical Society, 2017, Volume 139, Number 2, Page 672
[2]
Xavier Jusseau, Laurent Chabaud, and Catherine Guillou
Tetrahedron, 2014, Volume 70, Number 16, Page 2595

Comments (0)

Please log in or register to comment.
Log in