Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Spectrophotometric studies of the reaction of quercetin with peroxynitrite at different pH

Lidia Gebicka / Katarzyna Stawowska
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0125-4

Abstract

Peroxynitrite (ONOOH/ONOO-) which is formed in vivo under oxidative stress is a strong oxidizing and nitrating agent. It has been reported that several flavonoids, including quercetin, inhibit the peroxynitrite-induced oxidation and/or nitration of several molecules tested; however, the mechanism of their protective action against peroxynitrite is not univocally resolved. The kinetics of the reaction of quercetin with peroxynitrite was studied by stopped-flow as well as by conventional spectrophotometry under acidic, neutral and alkaline pH. The obtained results show that the protective mechanism of quercetin against peroxynitrite toxicity cannot be explained by direct scavenging of peroxynitrite. We propose that quercetin acts via scavenging intermediate radical products of peroxynitrite decomposition (it is an excellent scavenger of ·NO2) and/or via reduction of target radicals formed in the reaction with peroxynitrite.

Keywords: Autoxidation; Bicarbonate; Flavonoids; Peroxynitrite; Quercetin

  • [1] W.H. Koppenol, R. Kissner, Chem. Res. Toxicol. 11, 87 (1998) http://dx.doi.org/10.1021/tx970200xCrossrefGoogle Scholar

  • [2] O.V. Gerasimov, S.V. Lymar, Inorg. Chem. 38, 4317 (1999) http://dx.doi.org/10.1021/ic990384yCrossrefGoogle Scholar

  • [3] G.R. Hodges, K.U. Ingold, J. Am. Chem. Soc. 121, 10695 (1999) http://dx.doi.org/10.1021/ja991077uCrossrefGoogle Scholar

  • [4] P. Pacher, J.S. Beckman, L. Liaudet, Physiol. Rev. 87, 315 (2007) http://dx.doi.org/10.1152/physrev.00029.2006CrossrefGoogle Scholar

  • [5] G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 4, 161 (2009) http://dx.doi.org/10.1021/cb800279qCrossrefGoogle Scholar

  • [6] S.V. Lymar, J.K. Hurst, J. Am. Chem. Soc. 117, 8867 (1995) http://dx.doi.org/10.1021/ja00139a027CrossrefGoogle Scholar

  • [7] O. Augusto, M.G. Bonini, A.M. Amanso, E. Linares, C.C.X. Santos, S.L. de Menezes, Free Radic. Biol. Med. 32, 841 (2002) http://dx.doi.org/10.1016/S0891-5849(02)00786-4CrossrefGoogle Scholar

  • [8] K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, J. Nutr. Biochem. 13, 572 (2002) http://dx.doi.org/10.1016/S0955-2863(02)00208-5CrossrefGoogle Scholar

  • [9] M. Trujillo, G. Ferrer-Sueta, R. Radi, Antiox. Redox. Sign. 10, 1 (2008) http://dx.doi.org/10.1089/ars.2007.1705CrossrefGoogle Scholar

  • [10] G.E. Arteel, P. Schroeder, H. Sies, J. Nutr. 130, 2100S (2000) Google Scholar

  • [11] P. Schroeder, H. Zhang, L-O. Klotz, B. Kalyanaraman, H. Sies, Biochim. Biophys. Res. Commun. 289, 1334 (2001) http://dx.doi.org/10.1006/bbrc.2001.6134CrossrefGoogle Scholar

  • [12] Y. Kono, K. Kobayashi, S. Tagawa, K. Adachi, A. Ueda, Y. Sawa, H. Shibata, Biochim. Biophys. Acta 1335, 335 (1997) http://dx.doi.org/10.1016/S0304-4165(96)00151-1CrossrefGoogle Scholar

  • [13] G.R.M.M. Haenen, J.B.G. Paquay, R.E.M. Korthouwer, A. Bast, Biochem. Biophys. Res. Commun. 236, 591 (1997) http://dx.doi.org/10.1006/bbrc.1997.7016CrossrefGoogle Scholar

  • [14] J.S. Choi, H.Y. Chung, S.S. Kang, M.J. Jung, J.W. Kim, J.K. No, H.A. Jung, Phytother. Res. 16, 232 (2002) http://dx.doi.org/10.1002/ptr.828CrossrefGoogle Scholar

  • [15] M.R. Santos, L. Mira, Free Rad. Res. 38, 1011 (2004) http://dx.doi.org/10.1080/10715760400003384CrossrefGoogle Scholar

  • [16] M. Sadeghipour, R. Terreux, J. Phipps, Toxicol. in Vitro 19, 155 (2005) http://dx.doi.org/10.1016/j.tiv.2004.06.009CrossrefGoogle Scholar

  • [17] X. Chen, D.U. Ahn, J. Am. Oil Chem. Soc. 75, 1717 (1998) http://dx.doi.org/10.1007/s11746-998-0322-2CrossrefGoogle Scholar

  • [18] J.S. Beckman, J. Chen, H. Ischiropoulos, J.P. Crow, Methods Enzymol. 233, 229 (1994) http://dx.doi.org/10.1016/S0076-6879(94)33026-3CrossrefGoogle Scholar

  • [19] M.N. Huges, H.G. Nicklin, J. Chem. Soc. 450 (1968) Google Scholar

  • [20] O. Dangles, C. Dufour, S. Bret, J. Chem. Soc. PerkinTrans 2, 737 (1999) http://dx.doi.org/10.1039/a810017iCrossrefGoogle Scholar

  • [21] D. Metodiewa, A.K. Jaiswal, N. Cenas, E. Dickancaite, J. Segura-Aguilar, Free Radic. Biol. Med. 26, 107 (1999) http://dx.doi.org/10.1016/S0891-5849(98)00167-1CrossrefGoogle Scholar

  • [22] A. Zhou, O.A. Sadik, J. Agric. Food Chem. 56, 12081 (2008) http://dx.doi.org/10.1021/jf802413vCrossrefGoogle Scholar

  • [23] J.M. Herrero-Martinez, M. Sanmartin, M. Roses, E. Bosch, C. Rafols, Electrophoresis 26, 1886 (2005) http://dx.doi.org/10.1002/elps.200410258CrossrefGoogle Scholar

  • [24] U. Takahama, T. Oniki, S. Sirota, J. Agric. Food Chem. 50, 4317 (2002) http://dx.doi.org/10.1021/jf011697qCrossrefGoogle Scholar

  • [25] S. Hirota, U. Takahama, T.N. Ly, R. Yamauchi, J. Agric. Food Chem. 53, 3265 (2005) http://dx.doi.org/10.1021/jf0404389CrossrefGoogle Scholar

  • [26] H.M. Awad, M.G. Boersma, J. Vervoort, I.M.C.M. Rietjens, Arch. Biochem. Biophys. 32, 224 (2000) http://dx.doi.org/10.1006/abbi.2000.1832CrossrefGoogle Scholar

  • [27] R. Kissner, T. Nauser, C. Kurz, W.H. Koppenol, IUMBM Life 55, 567 (2003) http://dx.doi.org/10.1080/15216540310001628690CrossrefGoogle Scholar

  • [28] R.K. Broszkiewicz, Bull. Acad. Sci. Sedr. Sci. Chim. 24, 221 (1976) Google Scholar

  • [29] S.E. Schwartz, W.H. White, Adv. Environ. Sci. Technol. 12, 1 (1983) Google Scholar

  • [30] S. Goldstein, J. Lind, G. Merenyi, Chem. Rev. 105, 2457 (2005) http://dx.doi.org/10.1021/cr0307087CrossrefGoogle Scholar

  • [31] A. Torreggiani, A. Trinchero, M. Tamba, P. Taddei, J. Raman Spectrosc. 36, 380 (2005) http://dx.doi.org/10.1002/jrs.1300CrossrefGoogle Scholar

  • [32] C.Y. Zhao, Y.M. Shi, S.D. Yao, Z.J. Jia, B.T. Fan, W.F. Wang, W.Z. Lin, N.Y. Lin, R.L. Zheng, Pharmazie 58, 742 (2003) Google Scholar

  • [33] W. Bors, C. Michel, S. Schikora, Free Rad. Biol.Med. 19, 45 (1995) http://dx.doi.org/10.1016/0891-5849(95)00011-LCrossrefGoogle Scholar

  • [34] L-M. Lin, H-Y. Wu, W-S. Li, W-L. Chen, Y-J. Lee, D.C. Wu, P. Li, A. Yeh, Inorg. Chem. Commun. 13, 633 (2010) http://dx.doi.org/10.1016/j.inoche.2010.03.006CrossrefGoogle Scholar

  • [35] S.K. Nicholson, G.A. Tucker, J.M. Brameld, Br. J. Nutr. 103, 1398 (2010) http://dx.doi.org/10.1017/S0007114509993485CrossrefGoogle Scholar

  • [36] J. Glebska, W.H. Koppenol, Free Rad. Biol. Med. 35, 676 (2003) http://dx.doi.org/10.1016/S0891-5849(03)00389-7CrossrefGoogle Scholar

  • [37] M. Wrona, K. Patel, P. Wardman, Free Rad. Biol. Med. 38, 262 (2005) http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.022CrossrefGoogle Scholar

  • [38] L.K. Folkes, K.B. Patel, P. Wardman, M. Wrona, Arch. Biochem. Biophys. 484, 122 (2009) http://dx.doi.org/10.1016/j.abb.2008.10.014CrossrefGoogle Scholar

  • [39] P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988) Google Scholar

  • [40] J.-L. Miao, W.-F. Wang, J.-X. Pan, C.-Y. Liu, R.-Q. Li, S.-D. Yao, Radiat. Phys. Chem. 60, 163 (2001) http://dx.doi.org/10.1016/S0969-806X(00)00387-XCrossrefGoogle Scholar

  • [41] W. Bors, C. Michel, M. Saran, Methods Enzymol. 234, 420 (1994) http://dx.doi.org/10.1016/0076-6879(94)34112-5CrossrefGoogle Scholar

  • [42] S. Herold, M. Exner, F. Boccini, Chem. Res. Toxicol. 16, 390 (2003) http://dx.doi.org/10.1021/tx025595lCrossrefGoogle Scholar

  • [43] U. Ketsawatsakul, M. Whiteman, B. Halliwell, Biochem. Biophys. Res. Commun. 279, 692 (2000) http://dx.doi.org/10.1006/bbrc.2000.4014CrossrefGoogle Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 187–193, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0125-4.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. F. Shestakov, S. A. Golovanova, N. V. Lariontseva, A. P. Sadkov, V. M. Martynenko, and L. A. Levchenko
Russian Chemical Bulletin, 2015, Volume 64, Number 10, Page 2477
[2]
Petronela Žižková, Dušan Blaškovič, Magdaléna Májeková, L’ubomír Švorc, Lucia Račková, L’ubica Ratkovská, Miroslav Veverka, and L’ubica Horáková
Molecular and Cellular Biochemistry, 2014, Volume 386, Number 1-2, Page 1
[3]
Jerzy L. Gebicki, Piotr Meisner, Katarzyna Stawowska, and Lidia Gebicka
Radiation Physics and Chemistry, 2012, Volume 81, Number 12, Page 1881

Comments (0)

Please log in or register to comment.
Log in