Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Theoretical study of the conformational energy hypersurface of cyclotrisarcosyl

Maria Alvarez / Edgardo Saavedra / Mónica Olivella / Fernando Suvire / Miguel Zamora / Ricardo Enriz
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0136-1

Abstract

The multidimensional Conformational Potential Energy Hypersurface (PEHS) of cyclotrisarcosyl was comprehensively investigated at the DFT (B3LYP/6-31G(d), B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p)), levels of theory. The equilibrium structures, their relative stability, and the Transition State (TS) structures involved in the conformational interconversion pathways were analyzed. Aug-cc-pVTZ//B3LYP/6-311++G(d,p) and MP2/6-31G(d)//B3LYP/6-311++G(d,p) single point calculations predict a symmetric cis-cis-cis crown conformation as the energetically preferred form for this compound, which is in agreement with the experimental data. The conformational interconversion between the global minimum and the twist form requires 20.88 kcal mol-1 at the MP2/6-31G(d)//B3LYP/6-311++G(d,p) level of theory. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of this cyclic tripeptide, describing the conformations as well as the conformational interconversion processes in this hypersurface. In addition, a comparative analysis between the conformational behaviors of cyclotrisarcosyl with that previously reported for cyclotriglycine was carried out

Keywords: Cyclic tripeptides; Potential energy hypersurface; Conformational study; DFT calculations; Cyclotrisarcosyl

  • [1] N. Tamilarasu, I. Huq, T. Rana, Bioorg. Med. Chem. Lett. 10(9), 971 (2000) http://dx.doi.org/10.1016/S0960-894X(00)00140-2CrossrefGoogle Scholar

  • [2] M. Andrews, C. McInnes, G. Kontopidis, L. Innes, A. Cowan, A. Plater, P. Fischer, Org. Biomol. Chem. 2, 2735 (2004) http://dx.doi.org/10.1039/b409157dCrossrefGoogle Scholar

  • [3] M. Dygort, N. Go, H. Scheraga, Macromolecules 8(6), 750 (1975) http://dx.doi.org/10.1021/ma60048a016CrossrefGoogle Scholar

  • [4] F. Suvire, L. Santagata, J. Bombasaro, R. Enriz, J. Comput. Chem. 27(2), 188 (2006) http://dx.doi.org/10.1002/jcc.20328CrossrefGoogle Scholar

  • [5] M. Zamora, F. Suvire, R. Enriz, J. Comput. Chem. 29(2), 280 (2008) http://dx.doi.org/10.1002/jcc.20789CrossrefGoogle Scholar

  • [6] R. Tosso, M. Zamora, F. Suvire, R. Enriz, J. Phys. Chem. A 113(40), 10818 (2009) http://dx.doi.org/10.1021/jp905187kCrossrefGoogle Scholar

  • [7] G. Ramachandran, V. Sasisekharan, Adven. Prot. Chem. 23, 283 (1968) http://dx.doi.org/10.1016/S0065-3233(08)60402-7CrossrefGoogle Scholar

  • [8] L. LaPlanche, M. Rogers, J. Am. Chem. Soc. 86(3), 337 (1964) http://dx.doi.org/10.1021/ja01057a007CrossrefGoogle Scholar

  • [9] M. Perricaudet, A. Pullman, Int. J. Pept. Protein Res. 5(2), 99 (1973) http://dx.doi.org/10.1111/j.1399-3011.1973.tb02324.xCrossrefGoogle Scholar

  • [10] D. Christensen, N. Kortzeborn, B. Bak, J. Led. J. Chem. Phys. 53, 3912 (1970) Google Scholar

  • [11] D. Schnur, Y. Yun, D. Dalton, J. Org. Chem. 54(16), 3779 (1989) http://dx.doi.org/10.1021/jo00277a008CrossrefGoogle Scholar

  • [12] A. Radzicka, L. Pedersen, R. Wolfenden, Biochem. J. 27(12), 4538 (1988) http://dx.doi.org/10.1021/bi00412a047CrossrefGoogle Scholar

  • [13] L. Jorgensen, J. Gao, J. Am. Chem. 110(13), 4212 (1988) http://dx.doi.org/10.1021/ja00221a020CrossrefGoogle Scholar

  • [14] H. Baldoni, G. Zamarbide, R. Enriz, E. Jáuregui, O. Farkas, A. Perczel, S. Salpietro, I. Csizmadia, J. Mol. Struct. (THEOCHEM) 500, 97 (2000) http://dx.doi.org/10.1016/S0166-1280(00)00372-9CrossrefGoogle Scholar

  • [15] P. Groth, Acta Chem. Scand. 30A, 838 (1976) http://dx.doi.org/10.3891/acta.chem.scand.30a-0838CrossrefGoogle Scholar

  • [16] J. Schaug, Acta Chem. Scand. 25(7), 2271 (1971) Google Scholar

  • [17] J. Dale, K. Titlestad, Acta Chem. Scand. B29, 353 (1975) http://dx.doi.org/10.3891/acta.chem.scand.29b-0353CrossrefGoogle Scholar

  • [18] J. Dale, K. Titlestad, J. Chem. Soc. 12, 656 (1969) Google Scholar

  • [19] C. Ramakrishnan, P. Paul, K. Ramnarayan, Suppl. J. Biosci. 8, 239 (1985) http://dx.doi.org/10.1007/BF02703979CrossrefGoogle Scholar

  • [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., (Pittsburgh PA, 2003) Google Scholar

  • [21] L. Santagata, F. Suvire, R. Enriz, J. Torday, I. Csizmadia. THEOCHEM 465, 33 (1999) http://dx.doi.org/10.1016/S0166-1280(98)00498-9CrossrefGoogle Scholar

  • [22] L. Santagata, F. Suvire, R. Enriz, THEOCHEM 507, 89 (2000) http://dx.doi.org/10.1016/S0166-1280(99)00353-XCrossrefGoogle Scholar

  • [23] L. Santagata, F. Suvire, R. Enriz, THEOCHEM 536, 173 (2001) http://dx.doi.org/10.1016/S0166-1280(00)00630-8CrossrefGoogle Scholar

  • [24] L. Santagata, F. Suvire, R. Enriz, THEOCHEM 571, 91 (2001) http://dx.doi.org/10.1016/S0166-1280(01)00571-1CrossrefGoogle Scholar

  • [25] C. Gonzalez, H. Schlegel, J. Chem. Phys. 90, 2154 (1989) http://dx.doi.org/10.1063/1.456010CrossrefGoogle Scholar

  • [26] C. Gonzalez, H. Schlegel, J. Phys. Chem. 94, 5523 (1990) http://dx.doi.org/10.1021/j100377a021CrossrefGoogle Scholar

  • [27] P. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam and New York, 1987) Google Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 248–255, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0136-1.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Niklas Gangloff, Juliane Ulbricht, Thomas Lorson, Helmut Schlaad, and Robert Luxenhofer
Chemical Reviews, 2016, Volume 116, Number 4, Page 1753
[2]
[3]
Lars Goerigk, Amir Karton, Jan M. L. Martin, and Leo Radom
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 19, Page 7028

Comments (0)

Please log in or register to comment.
Log in