Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 13 (2015)

Optimization of analytical procedures for the simultaneous voltammetric determination of total Hg(II) in presence of Cu(II) in environmental matrices

Dora Melucci / Simona Montalbani / Clinio Locatelli
Published Online: 2011-11-24 | DOI: https://doi.org/10.2478/s11532-011-0138-z

Abstract

The present work reports the critical comparison about the employment of three different supporting electrolytes (0.1 mol L−1 HClO4, 0.01 mol L−1 EDTA-Na2 + 0.06 mol L−1 NaCl + 2.0 mol L−1 HClO4 and 0.1 mol L−1 KSCN + 0.001 mol L−1 HClO4) and their instrumental and chemical optimisation for the simultaneous voltammetric determination of total mercury(II) and copper(II) in sediments and sea water at gold electrode, especially discussing the reciprocal interference problems.

The differential pulse anodic stripping voltammetric (DPASV) measurements were carried out using a conventional three-electrode cell: a gold electrode (GE) as working electrode, a platinum wire and an Ag‖AgCl‖KClsat as auxiliary and reference electrodes, respectively.

The analytical procedure was verified by the analysis of standard reference materials: Estuarine Sediment BCR-CRM 277, River Sediment BCR-CRM 320 and Mercury in Water NIST-SRM 1641d.

Once set up on the standard reference materials, the analytical procedure was transferred and applied to sediments and sea waters sampled in a lagoon ecosystem connected with Adriatic Sea (Ravenna area, Italy).

Keywords: Mercury; Copper; Voltammetry; Signal Interference; Environmental

  • [1] E. Merian, M. Anke, M. Ihnat, M. Stoeppler, Elements and their Compounds in the Environment — Occurrence, Analysis and Biological Relevance (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004) Google Scholar

  • [2] R.D. Wilken, H. Hintelmann, Metal Speciation in the Environment, Edited by J.A.C. Broekaert, S. Gucer, F. Adams (Springer-Verlag, Berlin, 1990), 339–359 http://dx.doi.org/10.1007/978-3-642-74206-4_18CrossrefGoogle Scholar

  • [3] W.C. Davis, S.E. Long, J. Anal. Atom. Spectrom. 26, 431 (2011) http://dx.doi.org/10.1039/c0ja00175aCrossrefGoogle Scholar

  • [4] J.L. Rodrigues, S.S. de Souza, V.C. de Oliveira Souza, F. Barbosa Jr., Talanta 80, 158 (2010) Google Scholar

  • [5] M.H.M. Chan, I.H.S. Chan, A.P.S. Kong, R. Osaki, R.C.K. Cheung, C.S. Ho, G.W.K. Wong, C.W.K. Lam, Pathology 41, 467 (2009) http://dx.doi.org/10.1080/00313020903041085CrossrefGoogle Scholar

  • [6] M.V. Balarama Krishna, K. Chandrasekaran, D. Karunasagar, Talanta 81, 462 (2010) http://dx.doi.org/10.1016/j.talanta.2009.12.024CrossrefGoogle Scholar

  • [7] A. Taylor, S. Branch, M.P. Day, M. Patriarca, M. White, J. Anal. Atom. Spectrom. 25, 453 (2010) http://dx.doi.org/10.1039/c002232bCrossrefGoogle Scholar

  • [8] A. Castillo, P. Rodriguez-Gonzalez, G. Centineo, A.F. Roig-Navarro, J.I. Garcia Alonso, Anal. Chem. 82, 2773 (2010) http://dx.doi.org/10.1021/ac9027033CrossrefGoogle Scholar

  • [9] J.V. Cizdziel, C. Tolbert, G. Brown, Spectrochim. Acta B 65, 176 (2010) http://dx.doi.org/10.1016/j.sab.2009.12.002CrossrefGoogle Scholar

  • [10] J. Sardans, F. Montes, J. Penuelas, Spectrochim. Acta B 65, 97 (2010) http://dx.doi.org/10.1016/j.sab.2009.11.009CrossrefGoogle Scholar

  • [11] X. Jia, Y. Han, X. Liu, T. Duan, H. Chen, Spectrochim. Acta B 66, 88 (2011) http://dx.doi.org/10.1016/j.sab.2010.12.003CrossrefGoogle Scholar

  • [12] M.N. Colina, P.H.E. Gardiner, Z. Rivas, F. Troncone, Atom. Spectrosc. 32, 1 (2011) Google Scholar

  • [13] C.-G. Yuan, K. Lin, A. Chang, Microchim. Acta 171, 313 (2010) http://dx.doi.org/10.1007/s00604-010-0429-7CrossrefGoogle Scholar

  • [14] O.T. Butler, W. Cairns, J.M. Cook, C.M. Davidson, J. Anal. Atom. Spectrom. 26, 250 (2011) http://dx.doi.org/10.1039/c0ja90038aCrossrefGoogle Scholar

  • [15] J.L. Rodrigues, C.C. Alvarez, R.N. Farinas, J.J. Berzas Nevado, F. Barbosa Jr., R.C. Rodriguez Martin-Doimeadios, J. Anal. Atom. Spectrom. 26, 436 (2011) http://dx.doi.org/10.1039/c004931jCrossrefGoogle Scholar

  • [16] S.H. Lee, J.K. Suh, S.H. Lee, Microchem. J. 80, 233 (2005) http://dx.doi.org/10.1016/j.microc.2004.07.007CrossrefGoogle Scholar

  • [17] E. Bulska, H. Emteborg, D.C. Baxter, W. Frech, D. Ellingsen, Y. Thomassen, Analyst 117, 657 (1992) http://dx.doi.org/10.1039/an9921700657CrossrefGoogle Scholar

  • [18] I. Valimaki, P. Peramaki, Microchim. Acta 137, 191 (2001) http://dx.doi.org/10.1007/s006040170011CrossrefGoogle Scholar

  • [19] M.B. Alamin, A.M. Bejey, J. Kucera, J. Mizera, J. Radioanal. Nucl. Ch. 270, 143 (2006) http://dx.doi.org/10.1007/s10967-006-0321-4CrossrefGoogle Scholar

  • [20] J. Zhao, C. Chen, P. Zhang, Z. Chai, L. Qu, M. Li, J. Radioanal. Nucl. Ch. 259, 459 (2004) http://dx.doi.org/10.1023/B:JRNC.0000020918.92350.40CrossrefGoogle Scholar

  • [21] M.B.A. Vasconcellos, M.G.M. Catharino, G. Paletti, M. Saiki, P. Bode, D.I.T. Favaro, R. Baruzzi, D.A. Rodrigues, J. Trace Microprobe Tech. 20, 527 (2002) http://dx.doi.org/10.1081/TMA-120015614CrossrefGoogle Scholar

  • [22] J.M. Robert, D.L. Rabenstain, Anal. Chem. 63, 2674 (1991) http://dx.doi.org/10.1021/ac00023a003CrossrefGoogle Scholar

  • [23] B. Welz, G. Schlemmer, J.R. Mudakavi, J. Anal. At. Spectrom. 7, 499 (1992) http://dx.doi.org/10.1039/ja9920700499CrossrefGoogle Scholar

  • [24] E. Bulska, W. Kandler, P. Pastawski, A. Hulanicki, Mikrochim. Acta 119, 137 (1995) http://dx.doi.org/10.1007/BF01244862CrossrefGoogle Scholar

  • [25] H. Matusiewicz, E. Stanisz, Cent. Eur. J. Chem. 8, 594 (2010) http://dx.doi.org/10.2478/s11532-010-0020-4CrossrefGoogle Scholar

  • [26] R.B. Voegborlo, A.A. Adimado, Food Chemistry 123, 936 (2010) http://dx.doi.org/10.1016/j.foodchem.2010.04.059CrossrefGoogle Scholar

  • [27] D.P. Torres, V.L.A. Frescura, A.J. Curtius, Microchem. J. 92, 206 (2009) http://dx.doi.org/10.1016/j.microc.2009.07.003CrossrefGoogle Scholar

  • [28] E.M. Martinis, P. Berton, R.A. Olsina, J.C. Altamirano, R.G. Wuilloud, J. Hazard. Mater. 167, 475 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.01.007CrossrefGoogle Scholar

  • [29] N. Pourreza, H. Parham, A.R. Kiasat, K. Ghanemi, N. Abdollahi, Talanta 78, 1293 (2009) http://dx.doi.org/10.1016/j.talanta.2009.01.056CrossrefGoogle Scholar

  • [30] E. Vereda Alonso, M.T. Siles Cordero, A. Garcia de Torres, P. Canada Rudner, J.N. Cano Pavon, Talanta 77, 53 (2008) http://dx.doi.org/10.1016/j.talanta.2008.05.053CrossrefGoogle Scholar

  • [31] N. Ferrua, S. Cerutti, J.A. Salonia, R.A. Olsina, L.D. Martinez, J. Hazard. Mater. 141, 693 (2007) http://dx.doi.org/10.1016/j.jhazmat.2006.07.028CrossrefGoogle Scholar

  • [32] M.J. da Silva, A.P.S. Paim, M.F. Pimentel, M.L. Cervera, M. de la Guardia, Anal. Chim. Acta 667, 43 (2010) http://dx.doi.org/10.1016/j.aca.2010.04.016CrossrefGoogle Scholar

  • [33] P.R. Aranda, R.A. Gil, S. Moyano, I. De Vito, L.D. Martinez, J. Hazard. Mater. 161, 1399 (2009) http://dx.doi.org/10.1016/j.jhazmat.2008.04.129CrossrefGoogle Scholar

  • [34] K. Leopold, L. Harwardt, M. Schuster, G. Schlemmer, Talanta 76, 382 (2008). http://dx.doi.org/10.1016/j.talanta.2008.03.010CrossrefGoogle Scholar

  • [35] P. Cava-Montesinos, E. Rodenas-Torralba, A. Morales-Rubio, Anal. Chim. Acta 506, 145 (2004) http://dx.doi.org/10.1016/j.aca.2003.11.023CrossrefGoogle Scholar

  • [36] L. Ebdon, M.E. Foulkes, S. Le Roux, R. Munoz-Olivas, Analyst 127, 1108 (2002) http://dx.doi.org/10.1039/b202927hCrossrefGoogle Scholar

  • [37] W.-b. Zhang, Z.-f. Su, X.-f. Chu, X.-a. Yang, Talanta 80, 2106 (2010) http://dx.doi.org/10.1016/j.talanta.2009.11.016CrossrefGoogle Scholar

  • [38] D. Sanchez-Rodas, W.T. Coms, B. Chen, P.B. Stockwell, J. Anal. Atom. Spectrom. 25, 933 (2010) http://dx.doi.org/10.1039/b917755hCrossrefGoogle Scholar

  • [39] D. Jagner, M. Josefson, K. Aren, Anal. Chim. Acta 141, 147 (1982) http://dx.doi.org/10.1016/S0003-2670(01)95318-8CrossrefGoogle Scholar

  • [40] D. Jagner, K. Aren, Anal. Chim. Acta 141, 157 (1982) http://dx.doi.org/10.1016/S0003-2670(01)95319-XCrossrefGoogle Scholar

  • [41] E. Bernalte, C.M. Sanchez, E.P. Gil, Anal. Chim. Acta 689, 60 (2011) http://dx.doi.org/10.1016/j.aca.2011.01.042CrossrefGoogle Scholar

  • [42] M. Korolczuk, A. Stepniowska, Electroanalysis 22, 2087 (2010) http://dx.doi.org/10.1002/elan.201000073CrossrefGoogle Scholar

  • [43] O. Abollino, A. Giacomino, M. Malandrino, S. Marro, E. Mentasti, J. Appl. Electrochem. 39, 2209 (2009) http://dx.doi.org/10.1007/s10800-009-9830-5CrossrefGoogle Scholar

  • [44] M.-C. Radulescu, A.F. Danet, Sensors 8, 7157 (2008) http://dx.doi.org/10.3390/s8117157CrossrefGoogle Scholar

  • [45] G.A. East, E.P. Marinho, Biol. Trace Elem. Res. 103, 261 (2005) http://dx.doi.org/10.1385/BTER:103:3:261CrossrefGoogle Scholar

  • [46] P. Salaun, C.M. van den Berg, Anal. Chem. 78, 5052 (2006) http://dx.doi.org/10.1021/ac060231+CrossrefGoogle Scholar

  • [47] B. Chen, L. Wang, X. Huang, P. Wu, Microchim. Acta 172, 335 (2011) http://dx.doi.org/10.1007/s00604-010-0457-3CrossrefGoogle Scholar

  • [48] X.-C. Fu, X: Chen, Z. Guo, C.-G- Xie, L.-T. Kong, J.-H. Liu, X.-J. Huang, Anal. Chim. Acta 685, 21 (2011) http://dx.doi.org/10.1016/j.aca.2010.11.020CrossrefGoogle Scholar

  • [49] J. Gong, T. Zhou, D. Song, L. Zhang, X. Hu, Anal. Chem. 82, 567 (2010) http://dx.doi.org/10.1021/ac901846aCrossrefGoogle Scholar

  • [50] O. Abollino, A. Giacomino, M. Malandrino, M. Piscionieri, E. Mentasti, Electroanalysis 20, 75 (2008) http://dx.doi.org/10.1002/elan.200704044CrossrefGoogle Scholar

  • [51] R.A.A. Munoz, F.S. Felix, M.A. Augelli, T. Pavesi, L. Angnes, Anal. Chim. Acta 571, 93 (2006) http://dx.doi.org/10.1016/j.aca.2006.04.034CrossrefGoogle Scholar

  • [52] J.M. Pinilla, L. Hernandez, A.J. Conesa, Anal. Chim. Acta 319, 25 (1996) http://dx.doi.org/10.1016/0003-2670(95)00469-6CrossrefGoogle Scholar

  • [53] W. Huang, S. Zhang, Anal. Sci. 18, 187 (2002) http://dx.doi.org/10.2116/analsci.18.187CrossrefGoogle Scholar

  • [54] J. Lu, X. He, X. Zeng, Q. Wan, Z. Zhang, Talanta 59, 553 (2003) http://dx.doi.org/10.1016/S0039-9140(02)00569-6CrossrefGoogle Scholar

  • [55] K. Wu, S. Hu, J. Fei, W. Bai, Anal. Chim. Acta 489, 215 (2003) http://dx.doi.org/10.1016/S0003-2670(03)00718-9CrossrefGoogle Scholar

  • [56] S.V. Romanenko, L.N. Larina, J. of Electroanal. Chem. 583, 155 (2005) http://dx.doi.org/10.1016/j.jelechem.2005.06.007CrossrefGoogle Scholar

  • [57] H. Zejli, P. Sharrock, J.L. Hidalgo-Hidalgo de Cisneros, I. Naranjo-Rodriguez, K.R. Temsamani, Talanta 68, 79 (2005) http://dx.doi.org/10.1016/j.talanta.2005.04.060CrossrefGoogle Scholar

  • [58] I.K. Tonle, E. Ngameni, A. Walcarius, Sensors and Actuators B 110, 195 (2005) http://dx.doi.org/10.1016/j.snb.2005.01.027CrossrefGoogle Scholar

  • [59] N. Yang, Q. Wan, J. Yu, Sensors and Actuators B 110, 246 (2005) http://dx.doi.org/10.1016/j.snb.2005.02.002CrossrefGoogle Scholar

  • [60] Y. Bonfil, M. Brand, E. Kirowa-Eisner, Anal. Chim. Acta 424, 65 (2000) http://dx.doi.org/10.1016/S0003-2670(00)01074-6CrossrefGoogle Scholar

  • [61] Z. Shi, J. Lipkowski, J. Electroanal. Chem. 403, 225 (1996) http://dx.doi.org/10.1016/0022-0728(95)04313-6CrossrefGoogle Scholar

  • [62] Z. Shi, S. Wu, J. Lipkowski, J. Electroanal. Chem. 384, 171 (1995) http://dx.doi.org/10.1016/0022-0728(94)03747-QCrossrefGoogle Scholar

  • [63] B. Welz, M. Sperling, Atomic Absorption Spectrometry, 3rd edition (Wiley VCH, Weinheim, 1999) Google Scholar

  • [64] C. Locatelli, D. Fabbri, G. Torsi, Ann. Chim. (Rome) 91, 425 (2001) Google Scholar

  • [65] A.J. Bard, L.R. Faulkner, Electrochemical Methods. Fundamental and Applications (Wiley, New York, 1980) Google Scholar

  • [66] H. Matsuda, Bull. Chem. Soc. Japan, 53, 3439 (1980) http://dx.doi.org/10.1246/bcsj.53.3439CrossrefGoogle Scholar

  • [67] Z. Galus, R.A. Chalmers, W.A.J. Bryce, Fundamentals of Electrochemical Analysis (Ellis Horwood, London, and Polish Scientific Publishers PWN, Warsaw, 1994) Google Scholar

  • [68] J. Wang, Stripping Analysis — Principles, Instrumentation and Applications (VCH Publishers, Deerfield Beach, FL, 1985) Google Scholar

  • [69] E.P. Parry, R.A. Osteryoung, Anal. Chem. 37, 1634 (1965) http://dx.doi.org/10.1021/ac60232a001CrossrefGoogle Scholar

  • [70] J.C. Miller, J.N. Miller, Statistics and Chemometrics for Analytical Chemistry, 6th edition (Pearson Education Ltd. Publ., Ashford Colour Press Ltd., Gosport, 2010) Google Scholar

  • [71] International Union of Pure and Applied Chemistry — Analytical Chemistry Division, Spectrochim. Acta 33B, 241 (1978) Google Scholar

  • [72] M. Miserocchi, L. Langone, S. Guerzoni, Water Sci. Technol. 28, 349 (1993). Google Scholar

  • [73] D. Fabbri, O. Felisatti, M. Lombardo, C. Trombini, I. Vassura, Sci. Total Environ. 213, 121 (1998) http://dx.doi.org/10.1016/S0048-9697(98)00083-7CrossrefGoogle Scholar

About the article

Published Online: 2011-11-24

Published in Print: 2012-02-01


Citation Information: Open Chemistry, Volume 10, Issue 1, Pages 267–276, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0138-z.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sergio L.C. Ferreira, Valfredo A. Lemos, Laiana O.B. Silva, Antonio F.S. Queiroz, Anderson S. Souza, Erik G.P. da Silva, Walter N.L. dos Santos, and Cesário F. das Virgens
Microchemical Journal, 2015, Volume 121, Page 227

Comments (0)

Please log in or register to comment.
Log in